Skip to main content
Log in

Investigation of the effects of angiogenesis on tumor growth using a mathematical model

  • Biophysics of Complex Systems
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A mathematical model of tumor growth has been developed that takes angiogenesis into account. Malignant cells under metabolic stress produce vascular endothelial growth factor, which stimulates angiogenesis and, thus, increases nutrient influx into a tumor. The model takes into account migration-proliferation dichotomy in malignant cells that depends on the nutrient concentration. Convective fluxes that occur upon active tumor-cell proliferation in a compact dense tissue have been also considered. The computational investigation of the model demonstrated that the diffusive tumor growth rate does not depend on angiogenesis, while for noninvasive tumors angiogenesis could significantly alter tumor growth, although it is not able to stop it completely. The causes and significance of the results for the estimation of the antitumor efficacy of antiangiogenic therapy are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AAT:

antitumor antiangiogenic therapy

VEGF:

vascular endothelial growth factor

References

  1. J. Folkman, P. Cole, and S. Zimmerman, Ann. Surg. 164, 491 (1966).

    Article  Google Scholar 

  2. J. Folkman, N. Engl. J. Med. 285, 1182 (1971).

    Article  Google Scholar 

  3. T. H. Adaír and J.-P. Montani, Angiogenesis, Ed. by J. Granger and D. N. Granger, in Morgan and Claypool Life Sciences Series (San Rafael, 2011).

    Google Scholar 

  4. M. A. Konerding, C. van Ackern, and E. Fait, in Blood Péfusion and Microenvironment of Human Tumors: Implications for Clinical Radiooncology, Ed. by M. Molls and P. Vaupel (Springer, Berlin, 2002), pp. 5–17.

  5. M. Welter, K. Bartha, and H. Rieger, J. Theor. Biol. 259, 405 (2009).

    Article  MathSciNet  Google Scholar 

  6. T. Deng, L. Zhang, X.-J. Liu, et al., Med. Oncol. 30 (4), (2013).

    Google Scholar 

  7. G. Dranitsaris, N. Beegle, A. Ravelo, et al., Clin. Lung Cancer 14 (2), 120 (2013).

    Article  Google Scholar 

  8. M. Nishino, A. Giobbie-Hurder, N. H. Ramaiya, and F. S. Hodi, J. Immunother. Cancer 2 (1), (2014).

    Google Scholar 

  9. J. Wang, L. Zhang, C. Jing, et al., Theor. Biol. Med. Model. 10 (2013).

  10. M. Welter, K. Bartha, and H. Rieger, J. Theor. Biol. 250, 257 (2007).

    Article  MathSciNet  Google Scholar 

  11. N. V. Mantzaris, S. Webb, and H. G. Othmer, J. Math. Biol. 49, 111 (2004).

    Article  MathSciNet  Google Scholar 

  12. A. Stephanou, S. R. McDougall, A. R. A. Anderson, and M. A. J. Chaplain, Math. Comput. Model. 44, 96 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  13. M. C. Eisenberg, Y. Kim, R. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 180 (50), 20078 (2011).

    Article  Google Scholar 

  14. P. Hinov, P. Gerlee, L. J. McCavley, et al., Math. Biosci. Eng. 6, 521 (2009).

    Article  MathSciNet  Google Scholar 

  15. K. R. Svanson, R. C. Rockne, J. Claridge, et al., Cancer Res., 71, 7366 (2011).

    Article  Google Scholar 

  16. B. Szomolay, T. D. Eubank, R. D. Roberts, et al., J. Theor. Biol. 303, 141 (2012).

    Article  MathSciNet  Google Scholar 

  17. M. Welter and H. Rieger, Eur. Phys. J. E 33, 149 (2010).

    Article  Google Scholar 

  18. F. Spill, P. Guerrero, T. Alarcon, et al., J. Math. Biol. (2014).

    Google Scholar 

  19. A. V. Kolobov and M. B. Kuznetsov, Russ. J. Num. Anal. Math. Model. 28 (5), 471 (2013).

    MATH  MathSciNet  Google Scholar 

  20. S. K. Stamatelos, E. Kima, A. P. Pathak, and A. S. Popel, Microvasc. Res. 91, 8 (2014).

    Article  Google Scholar 

  21. A. V. Kolobov, A. A. Polezhaev, and G. I. Solyanyk, in Mathematical Modelling and Computing in Biology and Medicine, Ed. by V. Capasso (2003), pp. 603–609.

  22. A. V. Kolobov, V. V. Gubernov, and A. A. Polezhaev, Math. Model. Nat. Phenom. 6 (7), 27 (2011).

    Article  MathSciNet  Google Scholar 

  23. A. Giese, R. Bjerkvig, M. E. Berens, and M. Westphal, J. Clin. Oncol. 21, 1624 (2003).

    Article  MATH  Google Scholar 

  24. A. V. Gusev and A. A. Polejaev, Int J. Biochem. Cell Biol. 30 (11), 1169 (1998).

    Article  Google Scholar 

  25. O. N. Pyaskovskaya, D. L. Kolesnik, A. V. Kolobov, et al., Exp. Oncol. 30, 269 (2008).

    Google Scholar 

  26. J. J. Casciari, S. V. Sotirchos, and R. M. Sutherland, Cell Prolif. 25, 1 (1992).

    Article  Google Scholar 

  27. M. Xiu, S. M. Turner, R. Busch, et al., FASEB J. 20 (Meet. Abstr. Suppl.), A718 (2006).

  28. F. Milde, M. Bergdorf and P. Koumoutsakos, Biophys. J. 95, 3146 (2008).

    Article  ADS  Google Scholar 

  29. A. H. Ko, A. P. Venook, E. K. Bergsland, et al., Cancer Chemother. Pharmacol. 66 (6), 1051 (2010).

    Article  Google Scholar 

  30. S. Takano, E. Ishikava, K. Nakai, et al., OncoTargets and Therapy, 7, 1551 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolobov.

Additional information

Original Russian Text © A.V. Kolobov, M.B. Kuznetsov, 2015, published in Biofizika, 2015, Vol. 60, No. 3, pp. 555–563.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolobov, A.V., Kuznetsov, M.B. Investigation of the effects of angiogenesis on tumor growth using a mathematical model. BIOPHYSICS 60, 449–456 (2015). https://doi.org/10.1134/S0006350915030082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915030082

Keywords

Navigation