Skip to main content
Log in

Photo-induced processes and the reaction dynamics of bacteriorhodopsin

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In recent years, a large body of data on the structure and dynamic properties of bacteriorhodopsin has been obtained at the atomic level with high temporal and spatial resolution. This information has been summarized in many reviews. In this review, we focused on the recent advances in observing the photo-induced response of bacteriorhodopsin and understanding the mechanisms of retinal–protein interactions, which are still unclear. We discuss our recent spectroscopic data that was obtained for the wild-type bacteriorhodopsin and model amino-acid compounds using FT-IR emission spectroscopy and UV spectroscopy in the visible area. We attempt to find an answer to one of the most important questions concerning the role of protein in bacteriorhodopsin in the primary processes on the basis of the characteristics of the structure and optical properties of glycine and L-lysine, which model the photo-induced behavior of opsin under natural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BR:

bacteriorhodopsin

LC:

liquid crystals

PSB:

protonated Schiff base

SB:

Schiff base

References

  1. D. Oesterhelt and B. Hess, Nat. New Biol. 233, 149 (1971).

    Article  Google Scholar 

  2. R. H. Lozier, R. A. Bogomolni, and W. Stoeckenius, Biophys. J. 15, 955 (1975).

    Article  ADS  Google Scholar 

  3. L. A. Drachev, A. D. Kaulen, V. P. Skulachev, et al., Biokhimiya 46, 5897 (1981).

    Google Scholar 

  4. U. Haupts, J. Tittor and D. Oesterhelt, Annu. Rev. Biophys. Biomol. Struct. 28, 367 (1999).

    Article  Google Scholar 

  5. J. K. Lanyi and H. Luecke, Membrane 11, 415 (2001).

    Google Scholar 

  6. J. Heberle, J. Fitter, H. J. Saas, and G. Buldt, Biophys. Chem. 85, 229 (2000).

    Article  Google Scholar 

  7. O. Beja, L. Aravind, and E. F. DeLong, Science 289, 1902 (2000).

    Article  ADS  Google Scholar 

  8. J. L. Spudich, C. S. Yang, K. H. Jung, and E. N. Spudich, Annu. Rev. Cell Dev. Biol. 16, 365 (2000).

    Article  Google Scholar 

  9. T. Friedrich, S. Geibel, R. Kalmbach, et al., J. Mol. Biol. 321, 821 (2002).

    Article  Google Scholar 

  10. J. A. Fuhrman, M. S. Schwalbach, and U. Stingl, Nat. Rev. Microbiol. 6, 488 (2008).

    Google Scholar 

  11. R. A. Mathies, S.W. Lin, J. B. Ames, and W.T. Pollard, Annu. Rev. Biophys. Biophys. Chem. 20, 491 (1991).

    Article  Google Scholar 

  12. H. Abramczyk, J. Chem. Phys. 120, 11120 (2004).

    Article  ADS  Google Scholar 

  13. R. Diller, in Ultrashort Laser Pulses in Biology and Medicine, Ed. by M. Braun, P. Gilch and W. Zinth (Springer, Berlin, 2008), pp. 243–277.

  14. J. Briand, J. Leonard, and S. Haacke, J. Optics 12, 064004 (2010).

    Article  Google Scholar 

  15. P. G. Kryukov, Yu. A. Lazarev, V. S. Letokhov, et al., Biofizika 123, 171 (1978).

    Google Scholar 

  16. M. C. Nuss, W. Zinth, W. Kaiser, et al., Chem. Phys. Lett. 117, 1 (1985).

    Article  ADS  Google Scholar 

  17. H.-J. Polland, M. A. Franz, W. Zinth, et al., Biophys. J. 49, 651 (1986).

    Article  Google Scholar 

  18. R. A. Mathies, C. H. Cruz Brito, W. T. Pollard, and C. V. Shank, Science 240, 4853 (1988).

    Article  Google Scholar 

  19. R. Diller, S. Maiti, G. C.Walker, et al., Chem. Phys. Lett. 241, 109 (1995).

    Article  ADS  Google Scholar 

  20. D. Xu, C. Martin, and K. Schulten, Biophys. J. 70, 453 (1996).

    Article  Google Scholar 

  21. G. G. Kochendoerfer and R. A. Mathies, Isr. J. Chem. 35, 211 (1995).

    Article  Google Scholar 

  22. R. Gonzalez-Luque, M. Garavelli, and M. Olivucci, Proc. Natl. Acad. Sci. U. S. A 97, 9379 (2000).

    Article  ADS  Google Scholar 

  23. T. Ye, E. Gershgoren, N. Friedman, et al., Chem. Phys. Lett. 314, 429 (1999).

    Article  ADS  Google Scholar 

  24. A. C. Terentis, Y. Zhou, and G. H. Atkinson, J. Phys. Chem. A 107, 10787 (2003).

    Article  Google Scholar 

  25. G. H. Atkinson, L. Ujj, and Y. Zhou, Biophys. J. 55, 263 (1989).

    Article  Google Scholar 

  26. L. Ujj, Y. Zhou, M. Sheves, et al., J. Am. Chem. Soc. 122, 96 (2000).

    Article  Google Scholar 

  27. A. V. Sharkov, A. V. Pakulev, S. V. Chekalin, and Yu. A.Matveetz, Biochim. Biophys. Acta 88, 94 (1985).

    Article  Google Scholar 

  28. R. A Mathies, C. H. Cruz Brito, W. T. Pollard, and C. V. Shank, Science 240, 777 (1988).

    Article  ADS  Google Scholar 

  29. M. C. Nuss, W. Zinth, W. Kaiser, et al., Chem. Phys. Lett. 117, 1 (1985).

    Article  ADS  Google Scholar 

  30. A. Aharoni, B. Hou, N. Friedman, et al., Biokhimiya 66 (11), 1499 (2001).

    Google Scholar 

  31. A. Aharoni, L. Weiner, M. Ottolenghi, and M. Sheves, J. Biol. Chem. 275, 21010 (2000).

    Article  Google Scholar 

  32. G. H. Atkinson, L. Ujj, and Y. Zhou, J. Phys. Chem. A 104, 4130 (2000).

    Article  Google Scholar 

  33. S. L. Logunov, V. V. Volkov, M. Braun, and M. A. ElSayed, Proc. Natl. Acad. Sci. U. S. A. 95, 8475 (2001).

    Article  ADS  Google Scholar 

  34. S. A. Locknar, A. Chowdhury, and L. A. Peteanu, J. Phys. Chem. 104, 5816 (2000).

    Article  Google Scholar 

  35. O. Bouevitch, A. Lewis, and M. Sheves, J. Phys. Chem. 99, 10648 (1995).

    Article  Google Scholar 

  36. G. I. Groma, A. Colonna, J. C. Lambry, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 7971 (2004).

    Article  ADS  Google Scholar 

  37. A. Colonna, G. I. Groma, J. L. Martin, et al., J. Phys. Chem. B 111, 2707 (2007).

    Article  Google Scholar 

  38. R. R. Birge, N. B. Gillespie, E. W. Izaguirre, et al., J. Phys. Chem. B 103, 10746 (1999).

    Article  Google Scholar 

  39. J. Herbst, K. Heyne, and R. Diller, Science 297, 822 (2002).

    Article  ADS  Google Scholar 

  40. O. Bismuth, N. Friedman, M. Sheves, and S. Ruhman, Chem. Phys. 341, 267 (2007).

    Article  ADS  Google Scholar 

  41. G. Zgrablie, Haacke, and Chergui, Chem. Phys. 338, 168 (2007).

    Article  Google Scholar 

  42. H. Kandori, Y. Furutani, S. Nishimura, et al., Chem. Phys. Lett. 334, 271 (2001).

    Article  ADS  Google Scholar 

  43. L. Song, M. A. El-Sayed, and J. K. Lanyi, Science 261, 891 (1993).

    Article  ADS  Google Scholar 

  44. K. Heyne, J. Herbst, B. Dominguez-Herrradon, et al., J. Phys. Chem. 104, 6053 (2000).

    Article  Google Scholar 

  45. J. T. M. Kennis D. S. Larsen, K. Ohta, et al., J. Phys. Chem. B 106, 6067 (2002).

    Article  Google Scholar 

  46. J. Herbst, K. Heyne, and R. Diller, Science 297, 822 (2002).

    Article  ADS  Google Scholar 

  47. R. Gross, M. M. Wolf, C. Schumann, et al., J. Am. Chem. Soc. 131, 14868 (2009).

    Article  Google Scholar 

  48. F. Garczarek, J. Wang, M. A. El-Sayed, and K. Gerwert, Biophys. J. 87, 2676 (2004).

    Article  ADS  Google Scholar 

  49. S. Schenkl, F. van Mourik, G. van der Zwan, et al., Science 309, 917 (2005).

    Article  ADS  Google Scholar 

  50. S. Schenkl, F. van Mourik, N. Friedman, et al., Proc. Natl. Acad. Sci. U. S. A. 103, 4101 (2006).

    Article  ADS  Google Scholar 

  51. J. Leonard, E. Portuondo-Campa, A. Cannizzo, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 7718 (2009).

    Article  ADS  Google Scholar 

  52. K. Edman, P. Nollert, A. Royant, et al., Nature 401, 822 (1999).

    Article  ADS  Google Scholar 

  53. H. Luecke, Biochim. Biophys. Acta. 1460, 133 (2000).

    Article  Google Scholar 

  54. H. Kandori, Biochim. Biophys. Acta 1460, 177 (2000).

    Article  Google Scholar 

  55. K. Tsuji and E. Neumann, Int. J. Biol. Macromol. 3, 231 (1981).

    Article  Google Scholar 

  56. A. A. Kononenko, E. P. Lukashev, S. K. Chamorovksy, et al., Biochim. Biophys. Acta 892, 56 (1987).

    Article  Google Scholar 

  57. R. Simmeth and G. W. Rayfield, Biophys. J. 57, 1099 (1990).

    Article  Google Scholar 

  58. G. I. Groma, J. Hebling, C. Ludwig, and J. Kuhl, Biophys. J. 69, 2060 (1995).

    Article  ADS  Google Scholar 

  59. J. Xu, A. B. Stickrath, P. Bhattachrya, et al., Biophys. J. 85, 1128 (2003).

    Article  Google Scholar 

  60. I-Ch. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley & Sons, 1995).

    Google Scholar 

  61. E. V. Rudenko and A. V. Sukhov, Pis’ma Zh. Eksp. Teor. Fiz. 59 (2), 133 (1994).

    Google Scholar 

  62. O. V. Degtyareva, V. N. Afanas’ev, N. N. Khechinashvili, and E. L. Terpugov, Sovr. Probl. Nauki Obraz. 4 (2013). http://www.science-education.ru/110-10010.

  63. O. V. Degtyareva, Doctoral Dissertation in Biology (Pushchino, 2014).

    Google Scholar 

  64. L. Homchaudhuri and R. Swaminathan, Chem. Lett. 8, 844 (2001).

    Article  Google Scholar 

  65. B.-H. Chai, J.-M. Zheng, Q. Zhao, and G. H. Pollack, J. Phys. Chem. A 112, 2242 (2008).

    Article  Google Scholar 

  66. S. Suresh, A. Ramanand, D. Jayaraman, and S. M. Navis Priya, J. Miner. Mater. Charact. Eng. 9, 1071 (2010).

    Google Scholar 

  67. A. N. Terenin, Photonics of Dye Molecules (Nauka, Leningrad, 1967) [in Russian].

    Google Scholar 

  68. A. G. Gagarinov, O. V. Degtyareva, A. A. Khodonov, and E. L. Terpugov, Vibrat. Spectrosc. 42, 231 (2006).

    Article  Google Scholar 

  69. E. L. Terpugov and O. V. Degtyareva, Biokhimiya 66 (11), 1628 (2001).

    Google Scholar 

  70. E. L. Terpugov, O. V. Degtyareva, JETP Lett. 73 (6), 282 (2001).

    Article  ADS  Google Scholar 

  71. M. Wolpert and P. Hellwig, Spectrochim. Acta A 64, 987 (2006).

    Article  ADS  Google Scholar 

  72. J. Kim, U. W. Schmitt, J. A. Gruetzmacher, et al., J. Chem. Phys. 116, 737 (2002).

    Article  ADS  Google Scholar 

  73. J. Lobaugh and G. A. Voth, J. Chem Phys. 104, 2056 (1996).

    Article  ADS  Google Scholar 

  74. G. Zundel, Adv. Chem. Phys. 111, 1 (2000).

    Google Scholar 

  75. R. Wu, R. A. Marta, J. K. Martens, et al., J. Am. Soc. Mass Spectrom. 22, 1651 (2011).

    Article  ADS  Google Scholar 

  76. J. Wang and M. A. El-Sayed, Biophys. J. 83, 1589 (2002).

    Article  ADS  Google Scholar 

  77. I. G. Groma, A. Colonna, J.-L. Martin, and M. H. Vos, Biophys. J. 100, 1578 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Degtyareva.

Additional information

Original Russian Text © E.L. Terpugov, O.V. Degtyareva, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 293–306.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terpugov, E.L., Degtyareva, O.V. Photo-induced processes and the reaction dynamics of bacteriorhodopsin. BIOPHYSICS 60, 232–243 (2015). https://doi.org/10.1134/S0006350915020189

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020189

Keywords

Navigation