Skip to main content
Log in

The effect of transcranial electromagnetic brain stimulation on the acquisition of the conditioned response in rats

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We studied the effect of transcranial electromagnetic stimulation on the acquisition of the active avoidance response with pain reinforcement in laboratory rats. We demonstrate that in male rats exposure of the brain to electromagnetic irradiation in the millimeter range with λ = 5.6 or 7.1 mm, modulated by a series of low-frequency pulses, prevented the acquisition of the conditioned avoidance response to a pain stimulus in 50% of the animals. The irradiation inhibited avoidance conditioning in an additional 25% of the animals. Similar treatment with transcranial electromagnetic stimulation after intraperitoneal injection of the antagonist of serotonergic receptors kytril did not influence avoidance conditioning. The electromagnetic brain stimulation did not affect the maintenance of the conditioned response in the animals that had developed it previously. Based on these data we hypothesize that the transcranial electromagnetic stimulation that was used in the present study promotes the synthesis of serotonin, which inhibits the formation of temporary connections during avoidance conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TEMS:

transcranial magnetic stimulation

References

  1. E. M. Wassermann, Ch. M. Epstein, U. Ziemann, et al., Oxford Handbook of Transcranial Stimulation (Oxford Univ. Press, 2008). ISBN-13: 978-0-19-856892-6.

    Google Scholar 

  2. J. Gever, Neurology 13 (2013).

  3. K. R Cohen, S. Soskic, T. Iuculano, et al., Curr. Biol. 20 (22), 2006 (2010). doi 10.1016/j.cub.2010.10.007.

    Google Scholar 

  4. A. P. Parakhonskii and A. V. Rubtsovenko, Sovr. Naukoemkie Tekhnol. 2, 161 (2008).

    Google Scholar 

  5. I. G. Rodnova and M. S. Serdobintsev, Med. Farmatsevt. Nauki 6 (2013).

  6. S. S. Nikitin and A. L. Kurenkov, Transcranial Magnetic Stimulation in Diagnosis and Treatment of Nervous System Diseases (Moscow, 2003) [in Russian].

    Google Scholar 

  7. T. Tsubokawa, J. Neurotrauma 12 (3), 345 (1995).

    Google Scholar 

  8. P. Deliac, E. Richer, J. Berthomieu, et al., Neurochirurgie 39 (5), 293 (1993).

    Google Scholar 

  9. V. M. Binghi, Magnetobiology (Milta, Moscow, 2002) [in Russian].

    Google Scholar 

  10. A. B. Gudkov, V. A. Karpin, N. K. Kostyukova, and E. S. Lovkina, Biophysical Aspects of the Ultraweak Magnetic Field (Ekologiya Cheloveka, Moascow, 2004) [in Russian].

    Google Scholar 

  11. V. E. Illarionov, Magnetotherapy (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  12. E. A. Sheiko and A. I. Shikhlyarova, Int. J. Appl. A. Fund. Res. 9, 93 (2014).

    Google Scholar 

  13. S. N. Kartashov, E. V. Sharova, M. L. Kulikov, and A. M. Ermakov, http://www.kubanvet.ru/journ2-09-06.html.

  14. K. Makowiecki, R. M. Harvey, and R. J. Sherrard, J. Neurosci. 34 (32), 10780 (2014).

    Article  Google Scholar 

  15. A. L. Benabid, A. Koudsie, A. Benazzouz, et al., J. Neurology 248 (3), 11137 (2001).

    Google Scholar 

  16. P. Krack, V. Fraix, A. Mendes, et al., Mov. Disord. 17, SI88 (2002).

    Google Scholar 

  17. A. I. Toma, A. S. Inisimova, and V. A. Elkin, Zdorov’e i Obrazovanie v XXI Veke 13 (2), 126 (2011).

    Google Scholar 

  18. Z. A. Aleksanyan, E. B. Lyskov, G. V. Kataeva, et al., Ross. Fiziol. Zh. im. I.M. Sechenova 90 (8), 1 (2004).

    Google Scholar 

  19. V. P. Lapshin, Yu. S. Goldfarb, A.V. Zhao, et al., Fizioterap. Bal’neol. Reabilit. 1. 45 (2007).

    Google Scholar 

  20. M. V. Supova and S. N. Smirnova, Fizioterap. Bal’neol. Reabilit. 4, 38 (2007).

    Google Scholar 

  21. S. C. Cheetham, C. L. Katona, and R. W. Horton, in Biological Aspects of Affective Disorders, Ed. by R.W. Horton and C.L. Katona (Academic Press, London, 1991).

  22. I. Anderson, S. Pilling, et al., The Treatment and Management of Depression in Adults (Br. Psychol. Soc. & Royal College of Psychiatrists, 2010).

    Google Scholar 

  23. M. Maes and H. Y. Meltzer, in Psychopharmacology: The Fourth Generation of Progress, Ed by M. Maes and H.Y. Meltzer (Raven Press, New York, 1994), pp. 933–944.

  24. A. B. Kogan, Fundamentals of the Physiology of Higher Nervous Activity (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  25. M. Yu. Stepanichev, Doctoral Dissertation in Biology (Moscow, 2010).

    Google Scholar 

  26. K. V. Sudakov, N. N. Karkishchenko, E. V. Koplok, et al., http://www.medjour.ru/issledovaniya/170-eksperimentalnoe-izuchenie-emotsij-i-pamyati.

  27. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (KDU, Moscow, 2012) [in Russian].

    Google Scholar 

  28. T. Brinker, E. Stopa, J. Morrison, and P. Klinge, Fluids Barriers CNS 5, 8118 (2014).

    Google Scholar 

  29. L. D.Landau and E. M. Lifshitz, Quantum Mechanics, Vol. 3 of A Course of Theoretical Physics (Nauka, Moscow, 1963; Pergamon, New York, 1965).

    Google Scholar 

  30. L. A. Blumenfeld, Soros. Obraz. Zh. 4, 33 (1998).

    Google Scholar 

  31. H. M. Siegel, Metal Ions in Biological Systems (CRC Press, 1979; Moscow, Mir, 1982).

    Google Scholar 

  32. E. B. Shadrin, A. V. Il’inskii, V. M. Kapralova, and V. O. Samoilov, Nauch. Tekh. Vedomosti St.-Peterb. Gos. Univ. 77, 51 (2009).

    Google Scholar 

  33. N. D. Devyatkov, M. B. Golant, and O. V. Batskii, in Specific Features in Medical Biological Applications of Millimeter Waves (IRE RAN, Moscow, 1994), no. 4, pp. 33–38.

    Google Scholar 

  34. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  35. L. Luo and J. Lu, arXiv:1102.3748v1 [q-bio.BM], 18 Feb 2011.

    Google Scholar 

  36. N. P. Didenko and O. V. Betskii, in Millimeter Waves in Medicine and Biology, Proc. X Ross. Symp. (Moscow, 1995), p. 135.

    Google Scholar 

  37. E. P. Khizhnyak and M. S. Ziskin, in Millimeter Waves in Medicine and Biology, Proc. XI Ross. Symp. (Moscow, 1997), p. 128.

    Google Scholar 

  38. V. I. Astafurov, A. A. Marennyi, and S. Yu. Semenov, in Proc. IV Russian Biophys. Congr. (Nizhni Novgorod, 2012), p. 16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Shadrin.

Additional information

Original Russian Text © V.O. Samoilov, E.B. Shadrin, E.B. Filippova, Ya. Katsnelson, H. Backhoff, M. Eventov, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 377–384.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilov, V.O., Shadrin, E.B., Filippova, E.B. et al. The effect of transcranial electromagnetic brain stimulation on the acquisition of the conditioned response in rats. BIOPHYSICS 60, 303–308 (2015). https://doi.org/10.1134/S0006350915020165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020165

Keywords

Navigation