Skip to main content
Log in

Brownian-dynamics simulations of protein–protein interactions in the photosynthetic electron transport chain

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The application of Brownian dynamics for simulation of transient protein–protein interactions is reviewed. The review focuses on the theoretical basics of the Brownian-dynamics method, its particular implementations, and the advantages and drawbacks of this method. The outlook for future development of Brownian dynamics-based simulation techniques is discussed. Special attention is given to analysis of Brownian dynamics trajectories. The second part of the review is dedicated to the role of Brownian-dynamics simulations in studying photosynthetic electron transport. Interactions of mobile electron carriers (plastocyanin, cytochrome c 6, and ferredoxin) with their reaction partners (cytochrome b 6 f complex, photosystem I, ferredoxin:NADP reductase, and hydrogenase) are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Waage and C. M. Guldberg, Forhandlinger: Videnskabs-Selskabet i Christiana 35 (1864).

  2. P. Waage and C. M. Gulberg, J. Chem. Educ. 63 (12), 1044 (1986).

    Google Scholar 

  3. M. V. Smoluchowski, Phys. Zeit. 17, 557 (1916).

    Google Scholar 

  4. M. V Smoluchowski, Z. Phys. Chem. 92, 129 (1917).

    Google Scholar 

  5. P. Debye, Trans. Electrochem. Soc. 82 (1), 265 (1942).

    Google Scholar 

  6. G. Schreiber, G. Haran, and H.-X. Zhou, Chem. Rev. 109 (3), 839 (2009).

    Google Scholar 

  7. C. Kleanthous, Protein–Protein Recognition (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  8. M. Medina and C. Gómez-Moreno, Photosynth. Res. 79 (2), 113 (2004).

    Google Scholar 

  9. J. K. Hurley, J. T. Hazzard, M. Martinez-Julvez, et al., Protein Sci. 8, 1614 (1999).

    Google Scholar 

  10. M. Martínez-Julvez, J. Hermoso, J. K. Hurley, et al., Biochemistr. 37 (51), 17680 (1998).

    Google Scholar 

  11. H.-X. Zhou and P. A. Bates, Curr. Opin. Struct. Biol. 23 (6), 887 (2013).

    Google Scholar 

  12. Q. Bashir, S. Scanu, and M. Ubbink, FEBS J. 278 (9), 1391 (2011).

    Google Scholar 

  13. J. Schilder and M. Ubbink, Curr. Opin. Struct. Biol. 23 (6), 911 (2013).

    Google Scholar 

  14. J. R. Austin and L. A. Staehelin, Plant Physiol. 155 (4), 1601 (2011).

    Google Scholar 

  15. F. E. Callahan, W. P. Wergin, N. Nelson, et al., Plant Physiol. 91 (2), 629 (1989).

    Google Scholar 

  16. R. J. Ellis, Curr. Opin. Struct. Biol. 11 (1), 114 (2001).

    Google Scholar 

  17. J. A. Dix and A. S. Verkman, Annu. Rev. Biophys. 37, 247 (2008).

    Google Scholar 

  18. H.-X. Zhou and A. Szabo, J. Chem. Phys. 95 (8), 5948 (1991).

    ADS  Google Scholar 

  19. D. J. Bicout and M. J. Field, J. Phys. Chem. 100 (7), 2489 (1996).

    Google Scholar 

  20. R. Brown, Phil. Mag. 4, 161 (1828).

    Google Scholar 

  21. A. Einstein and M. Smoluchowski, Brownian Motion (ONTI, Leningrad, 1934) [in Russian].

    Google Scholar 

  22. N. Wiener, J. Math. Phys. 2, 131 (1923).

    Google Scholar 

  23. G. G. Stokes, Trans. Cambridge Phil. Soc. 9 (11), 8 (1851).

    ADS  Google Scholar 

  24. A. Einstein, Ann. Phys. 322 (8), 549 (1905).

    Google Scholar 

  25. F. Perrin, J. Phys. Radiu. 7 (1), 1 (1936).

    Google Scholar 

  26. I. B. Kovalenko, A. M. Abaturova, P. A. Gromov, et al., Phys. Biol. 3, 121 (2006).

    ADS  Google Scholar 

  27. D. L. Ermak and J. A. McCammon, J. Chem. Phys. 69 (4), 1353 (1978).

    ADS  Google Scholar 

  28. L. Verlet, Phys. Rev. 159 (1), 98 (1967).

    ADS  Google Scholar 

  29. C. Stormer, Comptes Rendus du Congres Int. des Mathematiciens (Strasbgourg, 1920), p. 243.

    Google Scholar 

  30. C. Stormer, Arch. Sci. Phys. Nat. Geneve 24, 350 (1907).

    Google Scholar 

  31. Yu. L. Klimontovich, Usp. Fiz. Nau. 164 (8), 811 (1994).

    Google Scholar 

  32. R. F. Fox, Phys. Rep. 48 (3), 179 (1978).

    ADS  Google Scholar 

  33. D. A. Turchenkov and M. A. Turchenkov, Komp. Issled. Model. 4 (2), 325 (2012).

    Google Scholar 

  34. A. Branka and D. Heyes, Phys. Rev. E 58 (2), 2611 (1998).

    ADS  Google Scholar 

  35. L. J. Henderson, Am. J. Physiol. 21, 173 (1908).

    Google Scholar 

  36. K. A. Hasselbalch, Biochem. Z. 78, 112 (1917).

    Google Scholar 

  37. R. M. C. Dawson, D. C. Elliott, W. H. Elliott, et al., Data for Biochemical Research, 3rd ed. (Clarendon Press, Oxford, 1986).

    Google Scholar 

  38. D. C. Bas, D. M. Rogers, and J. H. Jensen, Protein. 73 (3), 765 (2008).

    Google Scholar 

  39. C. Tanford and J. G. Kirkwood, J. Am. Chem. Soc. 79, 5333 (1957).

    Google Scholar 

  40. G. M. Ullmann, E.-W. Knapp, and N. M. Kostic, J. Am. Chem. Soc. 119, 42 (1997).

    Google Scholar 

  41. N. A. Baker, D. Sept, S. Joseph, et al., Proc. Natl. Acad. Sci. U. S. A. 98 (18), 10037 (2001).

    ADS  Google Scholar 

  42. G. M. Ullmann and E.-W. Knapp, Eur. Biophys. J. 28 (7), 533 (1999).

    Google Scholar 

  43. R. R. Gabdoulline and R. C. Wade, J. Phys. Chem. 100 (9), 3868 (1996).

    Google Scholar 

  44. D. A. Beard and T. Schlick, Biopolymer. 58 (1), 106 (2001).

    Google Scholar 

  45. B. A. Luty, R. C. Wade, J. D. Madura, et al., J. Phys. Chem. 97 (1), 233 (1993).

    Google Scholar 

  46. J. E. Jones, Proc. R. Soc. A: Math. Phys. Eng. Sci. 106 (738), 463 (1924).

    ADS  Google Scholar 

  47. R. A. Buckingham, Proc. R. Soc. A: Math. Phys. Eng. Sci. 168 (933), 264 (1938).

    ADS  Google Scholar 

  48. S. Northrup, J. Boles, and J. Reynolds, J. Phys. Chem. 91, 5991 (1987).

    Google Scholar 

  49. M. E. Davis, J. D. Madura, B. A. Luty, et al., Comput. Phys. Commun. 62 (2), 187 (1991).

    ADS  Google Scholar 

  50. J. Madura, J. Briggs, R. Wade, et al., Comput. Phys. Commun. 91 (1–3), 57 (1995).

    ADS  Google Scholar 

  51. S. H. Northrup, MacroDox v. 2.0.2: Software for the Prediction of Macromolecular Interaction (Cookeville, TN: Tennessee Technol. Univ. Press, 1995).

    Google Scholar 

  52. S. S. Khrushchev, A. M. Abaturova, A. N. Diakonova, et al., Komp. Issled. Model. 5 (1), 47 (2013).

    Google Scholar 

  53. C. J. Camacho, S. R. Kimura, C. DeLisi, et al., Biophys. J. 78 (3), 1094 (2000).

    Google Scholar 

  54. R. R. Gabdoulline and R. C. Wade, J. Am. Chem. Soc. 131 (26), 9230 (2009).

    Google Scholar 

  55. T. V Pyrkov, A. O. Chugunov, N. A. Krylov, et al., Bioinformatic. 25 (9), 1201 (2009).

    Google Scholar 

  56. S. H. Northrup, S. A. Allison, and J. A. McCammon, J. Chem. Phys. 80 (4), 1517 (1984).

    ADS  Google Scholar 

  57. I. B. Kovalenko, A. M. Abaturova, P. A. Gromov, D. M. Ustinin, G. Yu. Riznichenko, E. A. Grachev, and A. B. Rubin, Biophysics (Moscow. 53 (2), 140 (2008).

    Google Scholar 

  58. O. S. Knyazeva, I. B. Kovalenko, A. M. Abaturova, G. Yu. Riznichenko, E. A. Grachev, and A. B. Rubin, Biophysics (Moscow). 55 (2), 221 (2010).

    Google Scholar 

  59. M. Ubbink, FEBS Lett. 583, (7), 1060 (2009).

    Google Scholar 

  60. C. Tang, J. Iwahara, and G. M. Clore, Natur. 444 (7117), 383 (2006).

    ADS  Google Scholar 

  61. S. H. Northrup and H. P. Erickson, Proc. Natl. Acad. Sci. U. S. A. 89 (8), 3338 (1992).

    ADS  Google Scholar 

  62. A. Spaar, C. Dammer, R. R. Gabdoulline, et al., Biophys. J. 90 (6), 1913 (2006).

    ADS  Google Scholar 

  63. R. R. Gabdoulline and R. C. Wade, J. Mol. Recognit. JM. 12 (4), 226 (1999).

    Google Scholar 

  64. S. Scanu, J. M. Foerster, G. M. Ullmann, et al., J. Am. Chem. Soc. 135 (20), 7681 (2013).

    Google Scholar 

  65. S. H. Northrup and J. T. Hynes, J. Chem. Phys. 71 (2), 871 (1979).

    ADS  Google Scholar 

  66. O. G. Berg and P. H. von Hippel, Annu. Rev. Biophys. Biophys. Chem. 14, 131 (1985).

    Google Scholar 

  67. G. Zou, R. D. Skeel, and S. Subramaniam, Biophys. J. 79 (2), 638 (2000).

    Google Scholar 

  68. G. Zou and R. D. Skeel, Biophys. J. 85 (4), 2147 (2003).

    Google Scholar 

  69. G. A. Huber and S. Kim, Biophys. J. 70 (1), 97 (1996).

    Google Scholar 

  70. A. Rojnuckarin, D. R. Livesay, and S. Subramaniam, Biophys. J. 79 (2), 686 (2000).

    Google Scholar 

  71. H. X. Zhou and A. Szabo, Biophys. J. 71 (5), 2440 (1996).

    Google Scholar 

  72. Y. Song, Y. Zhang, T. Shen, et al., Biophys. J. 86 (4), 2017 (2004).

    Google Scholar 

  73. A. I. Kobzar’, Applied Mathematical Statistics for Engineers and Scientists (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  74. R. R. Gabdoulline and R. C. Wade, Curr. Opin. Struct. Biol. 12 (2), 204 (2002).

    Google Scholar 

  75. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta Rev. Bioenerg. 811 (3), 265 (1985).

    Google Scholar 

  76. R. R. Gabdoulline and R. C. Wade, Method. 14 (3), 329 (1998).

    Google Scholar 

  77. D. P. Tolle and N. Le Novere, BMC Syst. Biol. 4 (1), 24 (2010).

    Google Scholar 

  78. H. I. Ingolfsson, C. A. Lopez, J. J. Uusitalo, et al., Wiley Interdiscip. Rev. Comput. Mol. Sci. 4 (3), 225 (2014).

    Google Scholar 

  79. M. Baaden and S. J. Marrink, Curr. Opin. Struct. Biol. 23 (6), 878 (2013).

    Google Scholar 

  80. G. A. Huber and J. A. McCammon, Comput. Phys. Commun. 181 (11), 1896 (2010).

    MATH  ADS  Google Scholar 

  81. M. Dlugosz, P. Zielinski, and J. Trylska, J. Comput. Chem. 32 (12), 2734 (2011).

    Google Scholar 

  82. T. Geyer, BMC Biophys. 4 (1), 7 (2011).

    MathSciNet  Google Scholar 

  83. A. Zhmurov, R. I. Dima, Y. Kholodov, et al., Protein. 78 (14), 2984 (2010).

    Google Scholar 

  84. D. M. Ustinin, I. B. Kovalenko, G. Yu. Piznichenko, et al., Komp. Issled. Model. 5 (1), 65 (2013).

    Google Scholar 

  85. S. Poblete, M. Praprotnik, K. Kremer, et al., J. Chem. Phys. 132 (11), 114101 (2010).

    ADS  Google Scholar 

  86. A. Stirbet, G. Y. Riznichenko, A. B. Rubin, and Govindjee, Biochemistry (Moscow). 79 (4), 291 (2014).

    Google Scholar 

  87. G. Y. Riznichenko, N. E. Belyaeva, I. B. Kovalenko, et al., in Current Problems in Photosynthesis Research (2014), Vol. 2, p. 41.

    Google Scholar 

  88. G. Y. Riznichenko, I. B. Kovalenko, A. M. Abaturova, A. N. Diakonova, O. S. Knyazeva, D. M. Ustinin, S. S. Khruschev, and A. B. Rubin, Biophysics (Moscow). 56 (5), 757(2011).

    Google Scholar 

  89. G. Y. Riznichenko, I. B. Kovalenko, A. M. Abaturova, et al., Biophys. Rev. 2 (3), 101 (2010).

    Google Scholar 

  90. A. Rubin, G. Riznichenko, and Govindjee, in Photosynthesis in Silico: Understanding Complexity from Molecules to Ecosystems, Ed. by A. Laisk, L. Nedbal, and Govindjee (Springer, Dordrecht, 2009), p. 151.

  91. A. Rubin and G. Riznichenko, Mathematical Biophysics (Springer US, Boston, MA, 2014).

    MATH  Google Scholar 

  92. G. S. Kachalova, A. C. Shosheva, G. P. Bourenkov, et al., J. Inorg. Biochem. 115, 174 (2012).

    Google Scholar 

  93. M. Ubbink, M. Ejdebeck, B. G. Karlsson, et al., Structure 6, 323 (1998).

    Google Scholar 

  94. P. B. Crowley, G. Otting, B. G. Schlarb-Ridley, et al., J. Am. Chem. Soc. 123, 10444 (2001).

    Google Scholar 

  95. P. B. Crowley, D. M. Hunter, K. Sato, et al., Biochem. J. 378 (Pt 1), 45 (2004).

    Google Scholar 

  96. C. Albarran, J. Navarro, M. de la Rosa, et al., Biochemistry 46, 997 (2007).

    Google Scholar 

  97. I. Cruz-Gallardo, I. Diaz-Moreno, A. Diaz-Quintana, et al., FEBS Lett. 586 (5), 646 (2012).

    Google Scholar 

  98. J. A. Navarro, M. Hervas, and M. A. De la Rosa, J. Biol. Inorg. Chem. 2 (1), 11 (1997).

    Google Scholar 

  99. A. Kannt, S. Young, and D. S. Bendall, Biochim. Biophys. Acta 1277, 115 (1996).

    Google Scholar 

  100. J. Illerhaus, L. Altschmied, J. Reichert, et al., J. Biol. Chem. 275 (23), 17590 (2000).

    Google Scholar 

  101. S. Modi, M. Nordling, L. G. Lundberg, et al., Biochim. Biophys. Act. 1102 (1), 85 (1992).

    Google Scholar 

  102. S. He, S. Modi, D. S. Bendall, et al., EMBO J. 10 (13), 4011 (1991).

    Google Scholar 

  103. L. Qin and N. M. Kostic, Biochemistr. 32 (23), 6073 (1993).

    Google Scholar 

  104. S. E. Hart, B. G. Schlarb-Ridley, C. Delon, et al., Biochemistr. 42 (17), 4829 (2003).

    Google Scholar 

  105. B. G. Schlarb-Ridley, D. S. Bendall, and C. J. Howe, Biochemistry 21, 3279 (2002).

    Google Scholar 

  106. R. Hulsker, M. V Baranova, G. S. Bullerjahn, et al., J. Am. Chem. Soc. 130 (6), 1985 (2008).

    Google Scholar 

  107. I. Diaz-Moreno, A. Diaz-Quintana, M. A. De la Rosa, et al., Biochemistr. 44 (9), 3176 (2005).

    Google Scholar 

  108. I. Diaz-Moreno, A. Diaz-Quintana, M. A. De la Rosa, et al., J. Biol. Chem. 280 (19), 18908 (2005).

    Google Scholar 

  109. D. C. Pearson Jr. and E. L. Gross, Biophys. J. 75, 2698 (1998).

    Google Scholar 

  110. E. L. Gross, Photosynth. Res. 94 (2–3), 411 (2007).

    Google Scholar 

  111. F. De Rienzo, R. R. Gabdoulline, M. C. Menziani, et al., Biophys. J. 81 (3), 3090 (2001).

    Google Scholar 

  112. J. A. Cruz, B. A. Salbilla, A. Kanazawa, et al., Plant Physiol. 127, 1167 (2001).

    Google Scholar 

  113. E. J. Haddadian and E. L. Gross, Biophys. J. 88, 2323 (2005).

    Google Scholar 

  114. E. J. Haddadian and E. L. Gross, Biophys. J. 90, 566 (2006).

    ADS  Google Scholar 

  115. E. L. Gross, D. C. Pearson Jr., and D. C. Pearson, Biophys. J. 85 (3), 2055 (2003).

    Google Scholar 

  116. E. J. Haddadian and E. L. Gross, Biophys. J. 91, 2589 (2006).

    ADS  Google Scholar 

  117. E. L. Gross, Biophys. J. 87, 2043 (2004).

    ADS  Google Scholar 

  118. E. L. Gross and I. Rosenberg, Biophys. J. 90, 366 (2006).

    ADS  Google Scholar 

  119. I. B. Kovalenko, O. S. Knyazeva, G. Yu. Riznichenko, and A. B. Rubin, Dokl. Biochem. Biophys. 440, 213 (2011).

    Google Scholar 

  120. I. B. Kovalenko, O. S. Knyazeva, G. Yu. Riznichenko, and A. B. Rubin, Biophysics (Moscow). 59 (1), 1 (2014).

    Google Scholar 

  121. G. Finazzi, F. Sommer, and M. Hippler, Proc. Natl. Acad. Sci. U. S. A. 102 (19), 7031 (2005).

    ADS  Google Scholar 

  122. T. Ueda, N. Nomoto, M. Koga, et al., Plant Cel. 24 (10), 4173 (2012).

    Google Scholar 

  123. T. Shikanai, A. Busch, and M. Hippler, Biochim. Biophys. Acta: Bioenerg. 1807 (8), 864 (2011).

    Google Scholar 

  124. A. Amunts, H. Toporik, A. Borovikova, et al., J. Biol. Chem. 285 (5), 3478 (2010).

    Google Scholar 

  125. P. Setif, N. Harris, B. Lagoutte, et al., J. Am. Chem. Soc. 132 (31), 10620 (2010).

    Google Scholar 

  126. S. V. Ruffle, A. O. Mustafa, A. Kitmitto, et al., J. Biol. Chem. 275 (46), 36250 (2000).

    Google Scholar 

  127. P. Setif, N. Fischer, B. Lagoutte, et al., Biochim. Biophys. Acta: Bioenerg. 1555 (1), 204 (2002).

    Google Scholar 

  128. S. V Ruffle, A. O. Mustafa, A. Kitmitto, et al., J. Biol. Chem. 277 (28), 25692 (2002).

    Google Scholar 

  129. A. Ben-Shem, F. Frolow, and N. Nelson, Nature 426, 630 (2003).

    ADS  Google Scholar 

  130. E. Myshkin and G. S. Bullerjahn, Biophys J. 82, 3305 (2002).

    Google Scholar 

  131. R. Morales, G. Kachalova, F. Vellieux, et al., Acta Crystallogr. D: Biol. Crystallogr. 56 (Pt 11), 1408 (2000).

    Google Scholar 

  132. I. B. Kovalenko, A. M. Abaturova, G. Y. Riznichenko, et al., BioSystems 103, 180 (2011).

    Google Scholar 

  133. H. Long, C. H. Chang, P. W. King, et al., Biophys. J. 95 (8), 3753 (2008).

    Google Scholar 

  134. C. H. Chang, P. W. King, M. L. Ghirardi, et al., Biophys J. 93 (9), 3034 (2007).

    Google Scholar 

  135. H. Long, P. W. King, M. L. Ghirardi, et al., J. Phys. Chem. 113 (16), 4060 (2009).

    Google Scholar 

  136. I. B. Kovalenko, A. N. Diakonova, A. M. Abaturova, et al., Phys. Biol. 7 (2), 26001 (2010).

    Google Scholar 

  137. A. N. Diakonova, S. S. Khrushchev, I. B. Kovalenko, et al., Photosynth. Res. (submitted).

  138. S. Juric, K. Hazler-Pilepic, A. Tomasic, et al., Plant J. 60 (5), 783 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Khruschev.

Additional information

Original Russian Text © S.S. Khruschev, A.M. Abaturova, A.N. Diakonova, V.A. Fedorov, D.M. Ustinin, I.B. Kovalenko, G.Yu. Riznichenko, A.B. Rubin, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 270–292.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khruschev, S.S., Abaturova, A.M., Diakonova, A.N. et al. Brownian-dynamics simulations of protein–protein interactions in the photosynthetic electron transport chain. BIOPHYSICS 60, 212–231 (2015). https://doi.org/10.1134/S0006350915020086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020086

Keywords

Navigation