Skip to main content
Log in

Modeling of the Drosophila gap-gene network with the variation of the Bcd morphogen

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Expression patterns of segmentation genes form under the influence of gradients of maternal transcription factors, which initiate spatially local expression in the segmentation gene cascade. Bcd acts as one of these activators. A model of the regulation in the gap-gene network was studied by varying the Bcd concentration. The topology that is known for the gap-gene network was found to be insufficient for explaining the experimental finding that the hb anterior expression domain shifts when the Bcd concentration changes in the embryo. Modeling that was performed to comply with this experimental finding yielded a new topology, which determined the proper shifts of the hb expression domain. The result indicates that interactions of hb, Kr, and gt act as key regulatory factors to ensure the correct behavior of the hb expression pattern upon changes in Bcd concentration. This study made it possible to specify the limits of the validity of phenomenological models of gene networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

anteroposterior

References

  1. W. Driever and C. Nusslein-Volhard, Cell 54, 83 (1988).

    Article  Google Scholar 

  2. M. Hulskamp, C. Schroder, C. Pfeifle, et al., Nature 338, 629 (1989).

    Article  ADS  Google Scholar 

  3. D. Weigel, G. Jurgens, M. Klingler, and H. Jackle, Science 248 (4954), 495 (1990).

    Article  ADS  Google Scholar 

  4. P. W. Ingham, Nature 335, 25 (1988).

    Article  ADS  Google Scholar 

  5. S. M. Cohen and G. Jurgens, Nature 346, 482 (1990).

    Article  ADS  Google Scholar 

  6. U. Grossniklaus, K. M. Cadigan, and W. J. Gehring, Development 120 (11), 3155 (1994).

    Google Scholar 

  7. A. Vincent, J. T. Blankenship, and E. Wieschaus, Development 124, 747 (1997).

    Google Scholar 

  8. J. T. Blankenship and E. Wieschaus, Development 128, 5129 (2001).

    Google Scholar 

  9. L. Wolpert, J. Theor. Biol. 25, 1 (1969).

    Google Scholar 

  10. H. G. Frohnhofer, R. Lehmann, and C. Nusslein-Volhard, J. Embryol. Exp. Morphol. 97 (Suppl.), 169 (1986).

    Google Scholar 

  11. W. Driever and C. Nusslein-Volhard, Cell 54, 95 (1988).

    Article  Google Scholar 

  12. B. Houchmandzadeh, E. Wieschaus, and S. Leibler, Nature 415, 798 (2002).

    Article  ADS  Google Scholar 

  13. S. Bergmann, O. Sandler, H. Sberro, et al., PLoS Biol. 5 (2), e46 (2007).

    Article  Google Scholar 

  14. F. Liu, A. H. Morrison, and T. Gregor, Proc. Natl. Acad. Sci. U. S. A. 110 (17), 6724 (2013).

    Article  ADS  Google Scholar 

  15. E. Mjolsness, J. Reinitz, and D. H. Sharp, J. Theor. Biol. 152, 429 (1991).

    Article  Google Scholar 

  16. J. Jaeger, et al., Nature 430, 368 (2004).

    Article  ADS  Google Scholar 

  17. Manu, et al., PloS Biol. 7, e1000049 (2009).

    Article  Google Scholar 

  18. K. N. Kozlov, S. Surkova, E. Myasnikova, et al., PLoS Comput. Biol. 8, e1002635 (2012).

    Article  ADS  Google Scholar 

  19. Manu, S. Surkova, A. V. Spirov, et al., PLoS Comput. Biol. 5, e1000303 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  20. V. V. Gursky, L. Panok, E. M. Myasnikova, et al., BMC Syst. Biol. 5, 118 (2011).

    Google Scholar 

  21. C. Nusslein-Volhard, H. G. Frohnhofer, and R. Lehmann, Science 238, 1675 (1987).

    Article  ADS  Google Scholar 

  22. V. V. Gursky, K. N. Kozlov, A. M. Samsonov, and J. Reinitz, Biophysics (Moscow) 53 (2), 164 (2008).

    Article  Google Scholar 

  23. J. Jaeger, Cell. Mol. Life Sci. 68, 243 (2011).

    Article  Google Scholar 

  24. S. Surkova, D. Kosman, K. N. Kozlov, et al., Dev. Biol. 313 (2), 844 (2005).

    Article  Google Scholar 

  25. J. S. Margolis, M. L. Borowsky, E. Steingrimsson, et al., Development 121, 3067 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Samsonova.

Additional information

Original Russian Text © S.A. Andreev, M.G. Samsonova, V.V. Gursky, 2015, published in Biofizika, 2015, Vol. 60, No. 2, pp. 225–233.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, S.A., Samsonova, M.G. & Gursky, V.V. Modeling of the Drosophila gap-gene network with the variation of the Bcd morphogen. BIOPHYSICS 60, 173–180 (2015). https://doi.org/10.1134/S0006350915020025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020025

Keywords

Navigation