Skip to main content

Supramolecular reorganizations in cellulose during hydration

Abstract

Modern views of the structural organization of cellulose microfibrils were analyzed. A mechanism whereby an additional capillary-pore system forms in cellulose during its moistening was proposed. With the moisture reaching 8–10% in cellulose, its micropores were found to be filled and to increase in cross size and specific surface, while the crystallinity decreased. The parameters of the supramolecular structure and capillary-pore system of cotton cellulose were determined in the context of the microfibril structure model.

This is a preview of subscription content, access via your institution.

References

  1. D. P. Delmer and Y. Amor, Plant Cell, 987 (1995).

    Google Scholar 

  2. M. S. Doblin, I. Kurek, D. Jacob-Wilk, and D. P. Delmer, Plant Cell Physiol. 3(12), 1407 (2002).

    Article  Google Scholar 

  3. Z. A. Rogovin, The Chemistry of Cellulose (Khimiya, Moscow, 1972) [in Russian].

    Google Scholar 

  4. N. C. Carpita, Plant Physiol. 155(1), 171 (2011).

    Article  MathSciNet  Google Scholar 

  5. Y. Nishiyama, P. Langan, and H. Chanzy, J. Am. Chem. Soc. 124(31), 9074 (2002).

    Article  Google Scholar 

  6. K. Hess, E. Gutter, and H. Mah, Kolloidn. Zh. 158, 115 (1958).

    Google Scholar 

  7. G. V. Nikonovich, in Cellulose: Research Methods, Ed. by V. P. Karlivan (Zinatne, Riga, 1981), pp. 7–18 [in Russian].

  8. Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, and V. I. Talantcev, Butlerov. Soobshch. 20(6), 35 (2010).

    Google Scholar 

  9. Y. B. Grunin, L. Y. Grunin, E. A. Nikol’skaya, and V. I. Talantcev, Polymer Sci. Ser. A. 54(3), 201 (2012).

    Article  Google Scholar 

  10. V. I. Azarov, A. V. Burov, and A. V. Obolenskaya, The Chemistry of Wood and Synthetic Polymers: A Textbook for Students (S.-Peterb. Lesotech. Akad., St. Petersburg, 1999) [in Russian].

    Google Scholar 

  11. C. Verlhac, J. Dedier, and H. Chanzy, J. Polymer Sci. A: Polymer Chem. 28(5), 1171 (1990).

    ADS  Google Scholar 

  12. V. W. Tripp, in Cellulose and Cellulose Derivatives, Ed. by N. M. Bikales and L. Segal (Wiley, New York, 1971), vol. 1, pp. 305–323.

  13. D. L. VanderHart and R. H. Atalla, Macromolecules 17, 1465 (1984).

    Article  ADS  Google Scholar 

  14. V. I. Kovalenko, Usp. Khimii 79(3), 261 (2010).

    Google Scholar 

  15. Yu. B. Grunin, L. Yu. Grunin, T. V. Smotrina, et al., Sorption Processes in Biopolymers and Spectroscopic Methods for Their Analysis, Ed. by Yu. B. Grunin (Mariisk. Gos. Tech. Univ., 2010) [in Russian].

  16. R. M. Brown, J. Polymer Sci. A: Polymer Chem. 42, 487 (2004).

    ADS  Google Scholar 

  17. Y. Nishiyama, G. P. Johnson, A. D. French, et al., Biomacromolecules 9(11), 3133 (2008).

    Article  Google Scholar 

  18. Y. Nishiyama, J. Wood Sci. 55, 241 (2009).

    Article  Google Scholar 

  19. A. A. Baker, W. Helbert, J. Sugiyama, and M. J. Miles, Biophys. J. 79, 1139 (2000).

    Article  Google Scholar 

  20. Y. Nishiyama, J. Sugiyama, H. Chanzy, and P. Langan, J. Am. Chem. Soc. 125(47), 14300 (2003).

    Article  Google Scholar 

  21. N. I. Nikitin, The Chemistry of Wood and Cellulose (Inst. Vysokomol. Soed., Moscow, 1962) [in Russian].

    Google Scholar 

  22. Q. Li and S. Renneckar, Biomacromolecules 12(3), 650 (2011).

    Article  Google Scholar 

  23. H. R. Tang and P. S. Bellton, Solid State Nucl. Magn. Res. 21, 117 (2002).

    Article  Google Scholar 

  24. Yu. B. Grunin, L. Yu. Grunin, E. A. Nikol’skaya, et al., Russ. J. Phys. Chem. A 87(1), 100 (2013).

    Article  Google Scholar 

  25. J. Wohlert, M. Bergensträhle-Wohlert, and L. A. Berglund, Cellulose 19(6), 1821 (2012).

    Article  Google Scholar 

  26. T. Yamashiki, T. Matsui, M. Saitoh, et al., Br. Polymer J. 22(3), 201 (1990).

    Article  Google Scholar 

  27. H. Ono, M. Inamoto, and K. Okajima, Cellulose 4, 57 (1997).

    Article  Google Scholar 

  28. B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982).

    MATH  Google Scholar 

  29. A. P. Karmanov and S. P. Kuznetsov, in Problems in Wood and Forest Chemistry (Tr. Komi Nauch. Tsentr Ural. Otd. Ross. Akad. Nauk, Syktyvkar, 1997), no. 156, pp. 63–67 [in Russian].

    Google Scholar 

  30. V. P. Nikolaev, A. A. Ageev, and Yu. G. Frolov, in Isopiestic Analysis (Tr. Mosk. Khim-Technol. Inst. im. D.I. Mendeleeva, Moscow, 1978), no. 101, pp. 84–101 [in Russian].

    Google Scholar 

  31. www.nmr-design.com

  32. V. I. Chizhik, Nuclear Magnetic Relaxation (St. Petersburg, 2004) [in Russian].

    Google Scholar 

  33. Yu. B. Grunin, L. Yu. Grunin, and E. A. Nikol’skaya, Russ. J. Phys. Chem. A 81(7), 1165 (2007).

    Article  Google Scholar 

  34. A. A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  35. J. Leisen, H. W. Beckham, and M. B. Leisen, Solid State Nucl. Magn. Res. 22, 409 (2002).

    Article  Google Scholar 

  36. V. V. Mank and N. I. Lebovka, Nuclear Magnetic Resonance Spectroscopy of Water in Heterogeneous Systems (Naukova Dumka, Kiev, 1988) [in Russian].

    Google Scholar 

  37. S. Greg and K. Singh, Adsorption. Surface Area and Porosity (Academic Press, New York, 1967).

    Google Scholar 

  38. M. M. Dubinin, Zh. Fiz. Khim. 5, 1301 (1987).

    Google Scholar 

  39. I. Langmuir, J. Am. Chem. Soc. 38(11), 2221 (1916).

    Article  Google Scholar 

  40. I. A. Semiokhin, Physical Chemistry (Mosk., Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Grunin.

Additional information

Original Russian Text © Yu.B. Grunin, L.Yu. Grunin, V.I. Talantcev, E.A. Nikolskaya, D.S. Masas, 2015, published in Biofizika, 2015, Vol. 60, No. 1, pp. 53–64.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grunin, Y.B., Grunin, L.Y., Talantcev, V.I. et al. Supramolecular reorganizations in cellulose during hydration. BIOPHYSICS 60, 43–52 (2015). https://doi.org/10.1134/S0006350915010133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915010133

Keywords

  • cellulose
  • microfibril
  • hydrogen bond
  • nuclear magnetic resonance
  • absorption of water vapor
  • capillary-pore system