Skip to main content
Log in

Photophysical properties and photodynamic activity of nanostructured aluminum phthalocyanines

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Water-soluble supramolecular complexes of aluminum phthalocyanines with rare photoactive nano-aggregates were developed on the basis of mesoporous silica nanoparticles (AlCl-Pc-nSiO2) and polyvinylpyrrolidone (AlCl-Pc-PVP). Radiative lifetimes, extinction coefficients, and electron transition energies were calculated for isolated and associated metal phthalocyanine complexes. Nontoxic concentrations were determined for the synthetic nanocomposite photosensitizers in vitro. The photodynamic treatment efficacy was compared for three aluminum phthalocyanine modifications: Photosens®, AlCl-Pc-nSiO2, and AlCl-Pc-PVP. Mesenchymal stromal cells were used as a model for photodynamic treatment. The most efficient intracellular accumulation was observed for AlCl-Pc-nSiO2. Illumination of phthalocyanine-loaded cells led to a generation of reactive oxygen species and subsequent apoptotic cell death. Silica nanoparticles provided for a significant decrease in effective phthalocyanine concentration and enhanced cytotoxicity of photodynamic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MPc:

metal phthalocyanine complex

PDT:

photodynamic treatment

PVP:

polyvinylpyrrolidone

nSiO2 :

silica nanoparticles

MMSC:

multipotent mesenchymal stromal cell

AlCl-Pc:

aluminum chloride phthalocyanine

AlCl-Pc-nSiO2 :

AlCl-Pc supramolecular complexes based on nSiO2

AlCl-Pc-PVP:

AlCl-Pc supramolecular complexes based on PVP

LUMO:

lowest unoccupied molecular orbital

HOMO:

highest occupied molecular orbital

References

  1. G. N. Kamau and J. F. Rusling, Langmuir 12(11), 2645 (1996).

    Article  Google Scholar 

  2. E. A. Lukyanets and V. N. Nemykin, J. Porphyrins Phthalocyanines 14, 1 (2010).

    Article  Google Scholar 

  3. G. de la Torre, P. Vázquez, F. Agulló-López, and T. Torres, Chem. Rev. 104(9), 3723 (2004).

    Article  Google Scholar 

  4. W.-S. Li and T. Aida, Chem. Rev. 109(11), 6047 (2009).

    Article  Google Scholar 

  5. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Photodiag. Photodynam. Ther. 1, 279 (2004).

    Article  Google Scholar 

  6. M. L. Gelfond, Prakt. Onkol. 8(4), 204 (2007).

    MathSciNet  Google Scholar 

  7. D. Wohrle, A. Wendt, F. Weitemeyer, et al., Izv. Akad. Nauk, Ser. Khim. 12, 2071 (1994).

    Google Scholar 

  8. G. Bertoloni, F. Rossi, G. Valduqa, et al., Microbios. 71(286), 33 (1992).

    Google Scholar 

  9. E. Reddi, C. Zhou, R. Biolo, et al., Br. J. Cancer 61, 407 (1990).

    Article  Google Scholar 

  10. C. F. van Nostrum, Adv. Drug Deliv. Rev. 56, 9 (2004).

    Article  Google Scholar 

  11. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, et al., J. Am. Chem. Soc. 125, 7860 (2003).

    Article  Google Scholar 

  12. N. Bailly, M. Thomas, and B. Klumperman, Biomacromolecules 13, 4109 (2012).

    Google Scholar 

  13. Y. Piao, A. Burns, J. Kim, et al., Adv. Funct. Mater. 18, 3745 (2008).

    Article  Google Scholar 

  14. J. Tu, T. Wang, and W. Shi, Biomaterials 33, 7903 (2012).

    Article  Google Scholar 

  15. P. Couleaud, V. Morosini, C. Frochot, et al., Nanoscale 2, 1083 (2010).

    Article  ADS  Google Scholar 

  16. X. Liu, Y. Xu, Z. Wu, and H. Chen, Macromol. Biosci. 13, 147 (2013).

    Article  Google Scholar 

  17. J. Stagg, Stem Cell Rev. 4, 119 (2008).

    Article  Google Scholar 

  18. A. B. Mohseny and P. C. Hogendoorn, Stem Cells 29, 397 (2011).

    Article  Google Scholar 

  19. M. Ya. Mel’nikov, E. G. Bagryanskaya, Yu. A. Vainshtein, et al., Experimental Methods in High-Energy Chemistry, Ed. by M.Ya Mel’nikov (Mosk. Gos. Univ., Moscow, 2009) [in Russian].

  20. P. A. Zuk, M. Zhu, P. Ashjian, et al., Mol. Biol. Cell. 13, 4279 (2002).

    Article  Google Scholar 

  21. L. B. Buravkova, O. V. Grigorieva, E. R. Andreeva, et al., Bull. Exp. Biol. Med. 151(3), 344 (2011).

    Article  Google Scholar 

  22. S. T. Smiley, M. Reers, C. Mottola-Hartshorn, et al., Proc. Natl. Acad. Sci. U. S. A. 88(9): 3671 (1991).

    Article  ADS  Google Scholar 

  23. M. Reers, S. T. Smiley, C. Mottola-Hartshorn, et al., Methods Enzymol. 260: 406 (1995).

    Article  Google Scholar 

  24. F. Di Lisa, P. S. Blank, R. Colonna, et al., J. Physiol. 486, 1 (1995).

    Article  Google Scholar 

  25. C. Cottet-Rousselle, X. Ronot, X. Leverne, et al., Cytometry 79(6), 405 (2011).

    Article  Google Scholar 

  26. B. W. Veun and S. T. Stern, Methods Mol. Biol. 697, 207 (2011).

    Article  Google Scholar 

  27. T. Mosmann, J. Immunol. Methods 65(1–2), 55 (1983).

    Article  Google Scholar 

  28. H. Cen, F. Mao, I. Aronchik, et al., FASEB J. 22(7), 2243 (2008).

    Article  Google Scholar 

  29. O. O. Udartseva, E. R. Andreeva, and L. B. Buravkova, Dokl. Biol. Sci. 450, 185 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Udartseva.

Additional information

Original Russian Text © O.O. Udartseva, A.V. Lobanov, E.R. Andreeva, G.S. Dmitrieva, M.Ya. Mel’nikov, L.B. Buravkova, 2014, published in Biofizika, 2014, Vol. 59, No. 6, pp. 1051–1060.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udartseva, O.O., Lobanov, A.V., Andreeva, E.R. et al. Photophysical properties and photodynamic activity of nanostructured aluminum phthalocyanines. BIOPHYSICS 59, 854–860 (2014). https://doi.org/10.1134/S0006350914060244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914060244

Keywords

Navigation