Skip to main content
Log in

The process of heme synthesis in bone marrow mesenchymal stem cells cultured with fibroblast growth factor bFGF and under hypoxic conditions

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It was shown that fibroblast growth factor bFGF influences the process of heme synthesis and the proliferative activity and viability of bone marrow mesenchymal stem cells in culture under hypoxic conditions. The addition of fibroblast growth factor bFGF (7 ng/mL) to the medium under the above conditions led to the accumulation of aminolevulinic acid (an early porphyrin and heme precursor), an increase in the expression of CD71 (transferrin receptor), and a decrease in the content of porphyrin pigments and heme (a late precursor and end product of heme synthesis, respectively). It was found that cultivation of the cells under hypoxic conditions and bFGF is optimal for maintaining high viability and proliferation capacity of the mesenchymal stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MSCs:

mesenchymal stem cells

bFGF:

fibroblast growth factor b

ALA:

aminolevulinic acid

CD71:

transferrin receptor protein

FITC:

fluorescein isothiocyanate

FDA:

fluorescein diacetate

References

  1. R. J. Deans and A. B. Moseley, Exp. Hematol. 28(8), 875 (2000).

    Article  Google Scholar 

  2. R. P. Hill, D. T. Marie-Egyptienne, and D. W. Hedley, Semin. Radiat. Oncol. 19(2), 106 (2009).

    Article  Google Scholar 

  3. U. Silván, A. Díez-Torre, J. Arluzea, et al., Diferentiation 78(2–3), 159 (2009).

    Article  Google Scholar 

  4. A. Mohyeldin, T. Garzón-Muvdi, and A. Quicones-Hinojosa, Cell Stem Cell. 7(2), 150 (2010).

    Article  Google Scholar 

  5. L. Basciano, C. Nemos, B. Foliguet, et al., BMC Cell Biol. 12, Art. 12 (2011).

  6. C. M. Kolf, E. Cho, and R. S. Tuan, Arthritis Res. Ther. 9, 204 (2007).

    Article  Google Scholar 

  7. Y. W. Eom, J. E. Oh, J. I. Lee, et al., Biochim. Biophys. Res. Commun. 445(1), 16 (2014).

    Article  Google Scholar 

  8. Y. R., Yun, J. E. Won, E. Jeon, et al., J. Tissue Eng. Art. 218142 (2010).

    Google Scholar 

  9. E. S. Lobanok, Z. B. Kvacheva, S. V. Pinchuk, M. V. Volk, L. M. Mezhevikina, E. E. Fesenko, and I. D. Volotovski, Biophysics (Moscow) 59(2), 360 (2014).

    Google Scholar 

  10. S. Hankemeir, M. Keus, J. Zeichen, et al., Tissue Eng. 11(1–2), 41 (2005).

    Article  Google Scholar 

  11. P. Krishnamurthy and J. D. Schuetz, Curr. Pharm. Biotechnol. 12(4), 647 (2011).

    Article  Google Scholar 

  12. P. Krishnamurthy, T. Xie, and J. D. Schuetz, Pharmacol. Ther. 114(3), 345 (2007).

    Article  Google Scholar 

  13. J. Susanto, Y. Lin, Y. Chen, et al., PLoS ONE 3(12), e4023 (2008).

    Article  ADS  Google Scholar 

  14. A. G. Poleshko, E. S. Lobanok, and I. D. Volotovski, Klet. Teknol. Biol. Med. 1, 57 (2014).

    Google Scholar 

  15. Z. Darzynkiewicz, E. Bedner, and P. Smolewski, Semin. Hematol. 38, 179 (2001).

    Article  Google Scholar 

  16. I. V. Kudryavtsev, S. V. Khaidukov, A. V. Zurochka, et al., Flow Cytometry in Experimental Biology (Ural. Otd. Ross, Akad, Nauk, Yekaterinburg, 2012) [in Russian].

    Google Scholar 

  17. G. W. Miller, A. Denney, J. K. Wood, et al., Plant Cell Physiol. 20, 131 (1979).

    Google Scholar 

  18. N. P. Kuznetsova, V. S. Pankov, and A. S. Chibarov, Porphyrias (Meditsina, Moscow, 1981) [in Russian].

    Google Scholar 

  19. Biophysics of Living Systems: From Molecule to Organism (Belsens, Minsk, 2002) [in Russian].

  20. J. D. Wefnstein and S. I. Beale, J. Biol. Chem. 258, 6799 (1983).

    Google Scholar 

  21. D. Bartkowiak, S. Högner, H. Baust, et al., Cytometry 37, 191 (1999).

    Article  Google Scholar 

  22. D. D. Ross, C. C. Joneckis, J. V. Ordonez, et al., Cancer Res. 49, 3776 (1989).

    Google Scholar 

  23. A. G. Poleshko, E. S. Lobanok, and I. D. Volotovski, Izv. nats. Akad. Nauk Belarusi, Ser. Biol. Nauk 2, 77 (2014).

    Google Scholar 

  24. R. H. Wenger, D. P. Stiehl, and G. Camenisch, Sci. STKE 12(306), re12 (2005).

    Google Scholar 

  25. Assessment of HIF-1a Function and Identification of a Novel Degradation Mechanisms, Ed. by H. Andre (Karolinska Institutet, Stockholm, 2009).

    Google Scholar 

  26. B. Sarkadi, C. Ozvegy-Laczka, k. Nemet, et al., FEBS Lett. 567, 116 (2004).

    Article  Google Scholar 

  27. R. Larsen, Z. Gouveia, M. P. Soares, et al., Front. Pharmacol. 3, Art. 77 (2012).

  28. G. L. Semenza, Physiology 19, 176 (2004).

    Article  Google Scholar 

  29. H. Y. Dong, S. Wilkes, and H. Yang, Am. J. Surg. Pathol. 35(5), 723 (2011).

    Article  Google Scholar 

  30. M. Glasová, E. Koniková, J. Stasáková, et al., Neoplasma 45(2), 88 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Poleshko.

Additional information

Original Russian Text © A.G. Poleshko, E.S. Lobanok, L.M. Mezhevikina, E.E. Fesenko, I.D. Volotovski, 2014, published in Biofizika, 2014, Vol. 59, No. 6, pp. 1125–1130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poleshko, A.G., Lobanok, E.S., Mezhevikina, L.M. et al. The process of heme synthesis in bone marrow mesenchymal stem cells cultured with fibroblast growth factor bFGF and under hypoxic conditions. BIOPHYSICS 59, 913–917 (2014). https://doi.org/10.1134/S0006350914060177

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914060177

Keywords

Navigation