Skip to main content
Log in

Ortho-para spin conversion of H2O in aqueous solutions as a quantum factor of the Konovalov paradox

  • Discussions
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

An increase in the electroconductivity and biological activity accompanied by diffusion retardation (an increase in the diameter of nanoobjects) recently observed by Konovalov et al. and extremes of other parameters (ζ potential, surface tension, pH, and optical activity) in aqueous solutions with low concentrations do not appear for the Faraday shield from external electromagnetic fields. A representative sampling (∼60 samples and seven parameters) indicates the fundamental regularities of aqueous solutions and the nature of the Konovalov paradox, because it does not satisfy the existing models of water and contradicts the kinetic theory of liquids. A new concept of the physics of water is proposed for the explanation of the Konovalov paradox. The concept is based on the conventional models of water and does not revoke, but supplement, them to eliminate the observed contradictions and anomalies of water. The proposed notion takes into account quantum differences in the ortho-para spin isomers of H2O (rotational spin selectivity upon hydration and spontaneous formation of ice-like structures, quantum beats, and spin conversion induced by resonance electromagnetic fields) that exist in water and the observed size-dependent capability of thermoinduced self-assembling of amorphous complexes of H2O molecules (more than 275) into the ice structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Burlakova, A. A. Konradov, and I. V. Khudyakov, Izv. Akad. Nauk SSSR, Ser. Biol. No. 2, 184 (1992).

    Google Scholar 

  2. V. V. Belov, E. L. Mal’tseva, N. P. Pal’mina, and E. B. Burlakova, Dokl. Biochem. Biophys. 399, 362 (2004).

    Article  Google Scholar 

  3. G. M. Zubareva, A. V. Kargapolov, and S. L. Yaguzhinskii, Biophysics (Moscow) 48(2), 185 (2003).

    Google Scholar 

  4. A. I. Konovalov, I. S. Ryzhkina, L. I. Murtazina, et al., Izv. Akad. Nauk, Ser. Khim. No. 6, 1207 (2008).

    Google Scholar 

  5. I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, and A. I. Konovalov, Dokl. Akad. Nauk 428(4), 487 (2009).

    Google Scholar 

  6. N. P. Pal’mina, T. E. Chasovskaya, I. S. Ryzhkina, L. I. Murtasina, and A. I. Konovalov, Dokl. Biochem. Biophys. 429, 301 (2009).

    Article  Google Scholar 

  7. I. S. Ryzhkina, Yu. V. Kiseleva, A. P. Timosheva, et al. Dokl. Akad. Nauk 447(1), 1 (2012).

    Google Scholar 

  8. M. Chaplin, Water Structure and Science, www.btintrnet.com/martin.chaplin/phase.html

  9. Ya. I. Frenkel’, The Kinetic Theory of Fluid (Akad, Nauk SSSR, Leningrad, 1945) [in Russian].

    Google Scholar 

  10. K. Murata, T. Mitsuoka, T. Hirai, et al. Nature, 407, 599 (2000).

    Article  ADS  Google Scholar 

  11. L. Baturov and I. Govor, Phys. Wave Phenom. 20(3), 208 (2012).

    Article  ADS  Google Scholar 

  12. S. V. Stebnovskii, Zh. Tekh. Fiz. 74(1), 21 (2004).

    Google Scholar 

  13. G. M. Artmann, C. Kelemen, D. Porst, et al. Biophys. J. 75, 3179 (1998).

    Article  Google Scholar 

  14. G. M. Artmann, I. Digel, K. F. Zerlin, et al., Eur. Biophys. J. 38, 589 (2009).

    Article  ADS  Google Scholar 

  15. S. M. Pershin, Phys. Wave Phenom. 16(1), 15 (2008).

    Google Scholar 

  16. S. M. Pershin, Phys. Wave Phenom. 17(4), 241 (2009).

    Article  ADS  Google Scholar 

  17. S. M. Pershin, L. M. Krutyanskii, and V. A. Luk’yanchenko, JETP Lett. 94(2), 121 (2011).

    Article  ADS  Google Scholar 

  18. W. C. Röntgen, Ann. Phys. Chem. N.F. XLV, 91 (1891).

    Google Scholar 

  19. J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1, 515 (1933).

    Article  ADS  Google Scholar 

  20. O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and Hydration of Ions (Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  21. L. Pauling, The Nature of the Chemical Bond: An Introduction to Modern Structural Chemistry, 3rd ed. (Cornell Univ. Press, Ithaca, NY, 1960; Mir, Moscow, 1960).

    Google Scholar 

  22. A. K. Lyashchenko, L. V. Dunyashev, and V. S. Dunshev, Zh, Struct. Khim. 47, S36 (2006).

    Google Scholar 

  23. A. Nilsson and L. G. M. Pettersson, Chem. Phys. 389, 1 (2011).

    Article  ADS  Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics, 3rd ed. (Nauka, Moscow, 1974; Pergamon Press, Oxford, 1980).

    Google Scholar 

  25. Ya. B. Zel’dovich, A. L. Buchachenko, and E. L. Frankevich, Usp. Fiz. Nauk 155(1), 3 (1988).

    Article  Google Scholar 

  26. K. M. Salikhov, Ten Lectures in Spin Chemistry (Unipress, Kazan, 2000) [in Russian].

    Google Scholar 

  27. P. L. Chapovsky and L. J. F. Hermans, Annu. Rev. Phys. Chem. 50, 315 (1999).

    Article  ADS  Google Scholar 

  28. V. I. Tikhonov and A. A. Volkov, Science 296, 2363 (2002).

    Article  Google Scholar 

  29. S. A. Potekhin and R. S. Khusainova, Biophys. Chem. 118, 79 (2005).

    Article  Google Scholar 

  30. K. Kuyanov-Prozument, M. Y. Choi, and A. F. Vilesov, J. Chem. Phys. 132, 014304 (2010).

    Article  ADS  Google Scholar 

  31. R. Sliter, M. Gish, and A. F. Vilesov, J. Phys. Chem. A 115, 9682 (2011).

    Article  Google Scholar 

  32. A. F. Bunkin, A. A. Nurmatov, S. M. Pershin, and A. A. Vigasin, J. Raman Spectrosc. 36, 145 (2005).

    Article  ADS  Google Scholar 

  33. A. F. Bunkin, A. A. Nurmatov, and S. M. Pershin, Usp. Fiz. Nauk 176(8), 883 (2006).

    Google Scholar 

  34. S. M. Pershin and A. F. Bunkin, Laser Physics 19(7), 1410 (2009).

    Article  ADS  Google Scholar 

  35. A. F. Bunkin, S. M. Pershin, R. S. Khusainova, and S. A. Potekhin, Biophysics (Moscow) 54(3), 275 (2009).

    Article  Google Scholar 

  36. S. M. Pershin and R. Yu. Pishchalnikov, Phys. Wave Phenom. 20(1), 35 (2011).

    Article  ADS  Google Scholar 

  37. H. Kawakita, N. Dello Russo, R. Furusho, et al., Astrophys. J. 643(2), 1337 (2006).

    Article  ADS  Google Scholar 

  38. R. Popa and V. M. Cimpoiasu, Physics AUC 21, 11 (2011).

    Google Scholar 

  39. D. J. Morr’e, J. Orczyk, H. Hignite, and C. Kim, J. Inorg. Biochem. 102(2), 260 (2008).

    Article  Google Scholar 

  40. S. M. Pershin, Phys. Wave Phenom. 13(4), 192 (2005).

    Google Scholar 

  41. S. M. Pershin, Laser Physics 16(7), 1 (2006).

    Google Scholar 

  42. S. L. Veber, E. G. Bagryanskaya, and P. L. Chapovsky, J. Exp. Theor. Phys. 102(1), 76 (2006).

    Article  ADS  Google Scholar 

  43. K. B. Linesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008).

    Article  ADS  Google Scholar 

  44. S. M. Pershin, A. F. Bunkin, V. A. Lukyanchenko, and R. R. Nigmatullin, Laser Phys. Lett. 4(11), 809 (2007).

    Article  ADS  Google Scholar 

  45. S. M. Pershin, T. G. Adiks, V. A. Lukyanchenko, et al., Nelineinyi Mir 7(2), 79 (2009).

    Google Scholar 

  46. S. M. Pershin, A. F. Bunkin, and V. A. Lukyanchenko, Kvant. Elektron. 40(12), 1146 (2010).

    Article  ADS  Google Scholar 

  47. A. F. Bunkin and S. M. Pershin, Kvant. Elektron. 40(12), 1098 (2010).

    Article  ADS  Google Scholar 

  48. V. B. Efimov, A. N. Izotov, A. A. Levchenko, L. P. Mezhov-Deglin, and S. S. Khasanov, JETP Lett. 94(8), 621 (2011).

    Article  Google Scholar 

  49. C. Perez, M. T. Muckle, D. P. Zaleski, et al., Science 336, 897 (2012).

    Article  ADS  Google Scholar 

  50. Ch. C. Pradzinski, R. M. Forck, T. Zeuch, et al., Science 337(6101), 1529 (2012). doi 10.1126/science.1225468

    Article  ADS  Google Scholar 

  51. S. M. Pershin, A. F. Bunkin, and V. L. Golo, J. Exp. Theor. Phys. 115(6), 1008 (2012).

    Article  ADS  Google Scholar 

  52. G. N. Zatsepina, Zh. Struct. Khim. 10(2), 211 (1969).

    Google Scholar 

  53. Proceedings of International Congresses “Low and Superlow Fields and Radiations in Biology and Medicine” (St. Petersburg, 2003–2012) [in Russian]. www.LFBM-congress.spb.ru

  54. P. Vallee, J. Lafait, L. Legrand, et al., Langmuir 21(6), 2293 (2005).

    Article  Google Scholar 

  55. I. Otsuka and S. Ozeki, J. Phys. Chem. B. 110, 1509 (2006).

    Article  Google Scholar 

  56. L. P. Semikhina and V. F. Kiselev. Izv. Vyssh. Uchebn. Zaved., Fizika, No. 5, 13 (1988).

    Google Scholar 

  57. M. V. Berezin, G. N. Zatsepina, V. F. Kiselev, and A. M. Saletskii, Zh, Fiz. Khim. 65(5), 1338 (1991).

    Google Scholar 

  58. V. V. Lednev, N. A. Belova, A. M. Ermakov, E. B. Akimov, and A. G. Tonevitsky, Biophysics (Moscow) 53(6), 648 (2008).

    Article  Google Scholar 

  59. S. M. Pershin, in Proceedings of International Congresses “Low and Superlow Fields and Radiations in Biology and Medicine” (Inst. Analit. Priborostroeniya, Ross. Akad. Nauk, St. Petersburg, 2012) [in Russian]. www.LFDM-congress.spb.ru

    Google Scholar 

  60. S. M. Pershin, Biophysics (Moscow) 55(4), 555 (2010).

    Article  Google Scholar 

  61. A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Methods in Spectroscopy of the Water Vapor Molecule (Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  62. J. M. Zheng, A. Wexler, and G. H. Pollack, J. Coll. Interface Sci. 332, 511 (2009).

    Article  Google Scholar 

  63. H. Yoo, R. Paranji, and G. H. Pollack, J. Phys. Chem. Lett. 2(6), 532 (2011).

    Article  Google Scholar 

  64. G. H. Pollack, The Fourth Phase of Water: Beyond Solid, Liquid, and Vapor (Ebner & Sons, Seattle, WA, 2013).

    Google Scholar 

  65. S. M. Pershin, Nanostrukt. Mat. Fiz. Model. 7(2), 103 (2013).

    Google Scholar 

  66. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Nonrelativistic Theory (Nauka, Moscow, 1974; Pergamon, Oxford, 1976).

    Google Scholar 

  67. H. J. Loesch and B. Scheel, Phys. Rev. Lett. 85, 2709 (2000).

    Article  ADS  Google Scholar 

  68. A. Miani and J. Tennyson, J. Chem. Phys. 120(6), 2732 (2004).

    Article  ADS  Google Scholar 

  69. S. M. Pershin, Biophysics (Moscow) 58(5), 723 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

Additional information

Original Russian Text © S.M. Pershin, 2014, published in Biofizika, 2014, Vol. 59, No. 6, pp. 1209–1218.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershin, S.M. Ortho-para spin conversion of H2O in aqueous solutions as a quantum factor of the Konovalov paradox. BIOPHYSICS 59, 986–994 (2014). https://doi.org/10.1134/S0006350914060165

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914060165

Keywords

Navigation