, Volume 59, Issue 6, pp 973–985 | Cite as

The quasi-periodic character of intermolecular interactions in water

  • A. V. Drozdov
  • T. P. Nagorskaya


The dynamics of physical characteristics of water are studied using various methods of molecular structural analysis: IR spectroscopy, Raman spectroscopy, microwave radiometry, and nuclear magnetic resonance in the magnetic field of the Earth. The changes in the physical characteristics of water obey certain regularities. Similar and well-reproducible oscillation periods of the measured values are observed in all experiments, regardless of the method of analysis used. These periods are 1–3, 5–9, 10–13, 14–18, 21–29, 30–39, 41–55, and ∼60 min. The oscillation amplitudes vary up to 10%. Based on the two-structure model of water, the revealed quasi-periodic character of the intermolecular interactions may be related to the dynamics of mutual transitions between local structural inhomogeneities of water. It is proposed that the observed quasi-periodic character of the intermolecular interactions is due to spin isomerism of water molecules. The problems of the relationship between the oscillations of the physical properties of water and biorhythms are discussed.


physical properties of water structural peculiarities of water dynamics of physicochemical properties of water spin isomerism of water ortho and para water molecules intermolecular interactions in water rhythmic processes biorhythms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Szent-Györgyi, Bioenergetics (Academic Press, New York, 1957; Fizmargiz, Moscow, 1960).Google Scholar
  2. 2.
    G. N. Ling, Life at the Cell and Below-Cell Level: The Hidden History of a Fundamental Revolution in Biology (Pacific Pres, New York, 2001; Nauka, St. Petersburg, 2008).Google Scholar
  3. 3.
    G. H. Pollack, Cells, Gels and the Engines of Life: A New, Unifying Approach to Cell Function (Ebner & Sons, Seattle, 2001).Google Scholar
  4. 4.
    W. C. Rontgen, Ann. Phys. Chem. N.F. XLV, 91 (1891).Google Scholar
  5. 5.
    O. Ya. Samoilov, Structure of Aqueous Electrolyte Solutions and Hydration of Ions (Akad. Nauk SSSR, Moscow, 1957) [in Russian].Google Scholar
  6. 6.
    L. Pauling, in Hydrogen Bonding, Ed. by D. Hadzi and H.W. Thompson (Pergamon Press, London, 1959), pp. 1–6.Google Scholar
  7. 7.
    G. N. Satsepina, Physical Properties and Structure of Water (Mosk. Gos. Univ., Moscow, 1998) [in Russian].Google Scholar
  8. 8.
    D. Eisenberg and W. Kautzmann, The Structure and Properties of Water (Oxford Univ. Press, New York, 1969; Gidrometeoizdat, Leningrad, 1975).Google Scholar
  9. 9.
    A. V. Drozdov, T. P. Nagorskaya, S. V. Masyukevich, and E. S. Gorshkov, Biophysics (Moscow) 55(4), 652 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Nilsson and L. G. M. Pettersson, Chem. Phys. 389, 1 (2011).CrossRefADSGoogle Scholar
  11. 11.
    G. N. I. Clark, G. L. Hura, J. Teixeira, et al., Proc. Natl. Acad. Sci. U. S. A. 107(32), 14003 (2010).CrossRefADSGoogle Scholar
  12. 12.
    V. N. Binhi, Principles of Electromagnetic Biophysics (Fizmatlit, Moscow, 2011) [in Russian].Google Scholar
  13. 13.
    V. N. Binhi, Magnetobiology: Underlying Physical Problems (MILTA, Moscow, 2002; Academic Press, San Diego, CA, 2002).Google Scholar
  14. 14.
    V. I. Petrosyan, Yu. V. Gulyaev, E. A. Zhiteneva, et al., Radiotekhnika Elektronika 40(1), 127 (1995).Google Scholar
  15. 15.
    V. I. Petrosyan, N. I. Sinitsyn, V. A. Elkin, et al., Elektron. Prom., No. 1, 99 (2000).Google Scholar
  16. 16.
    P. M. Borodin, A. V. Mel’nikov, A. A. Morozov, et al., Earth’s Field Nuclear Magnetic Resonance (Leningr. Gos. Univ., Leningrad, 1967) [in Russian].Google Scholar
  17. 17.
    M. E. Packard and R. H. Varian, Phys. Rev. 93, 941 (1954).Google Scholar
  18. 18.
    Quantum Radiophysics: Magnetic Resonance and Its Applications, Ed. by V.I. Chizhik (St.-Peterb. Gos. Univ., St. Petersburg, 2009) [in Russian].Google Scholar
  19. 19.
    F. R. Chernikov, Biofizika 31(4), 695 (1986). Scholar
  20. 20.
    F. R. Chernikov, Biofizika 35(5), 711 (1990). Scholar
  21. 21.
    S. V. Gudkov, V. I. Bruskov, M. E. Astashev, et al., J. Phys. Chem. B 115(23), 7693 (2011).CrossRefGoogle Scholar
  22. 22.
    S. Ozeki and I. Otsuka, J. Phys. Chem. B 110(41), 20067 (2006).CrossRefGoogle Scholar
  23. 23.
    S. M. Pershin, Phys. Wave Phenom. 13(4), 192 (2005). Scholar
  24. 24.
    D. I. Morré, P. J. Chueh, J. Pletcher, et al., Biochemistry 40, 11941 (2002).CrossRefGoogle Scholar
  25. 25.
    T. K. Breus and A. A. Konradov, Effects of Solar Activity Rhythms: An Atlas of Temporal Variations in Natural, Anthropogenic, and Social Processes (Yanus-K, Moscow, 2002), vol. 3 [in Russian].Google Scholar
  26. 26.
    V. S. Martynyuk, B. M. Vladimirskii, and N. A. Temur’yants, Geofiz. Protsessy Biosfera 3(4), 91 (2004).Google Scholar
  27. 27.
    B. M. Vladimirskii, N. A. ”yants, and V. S. Martynyuk, Space Weather and Our Life (Vek 2, Fryazino, 2004).Google Scholar
  28. 28.
    A. N. Pavlov, Impact of Electromagnetic Radiation on Life Activities (Gelios ARV, Moscow, 2002).Google Scholar
  29. 29.
    S. E. Schnoll, V. A. Namiot, V. E. Zhvirblis, et al., Biofizika 29(1), 153 (1983).Google Scholar
  30. 30.
    B. M. Vladimirskii and A. A. Konradov, Uch. Zap. Tavrich. Nats. Univ. im. V.I. Vernadskogo, Ser. Biol Khim. 20 (59), No. 1, 92 (2007).Google Scholar
  31. 31.
    T. A. Zenchenko, A. A. Medvedeva, N. I. Khorseva, et al., Geofiz. Protseccy Biosfera 12 (4), 73 (2013). Google Scholar
  32. 32.
    T. A. Zenchenko, M. Dzhordanova, L. V. Poskotinova, et al., Biophysics (Moscow) 59(6), 1186 (2014). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  1. 1.Institute of Analytical Instrument MakingRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations