Skip to main content
Log in

Activation of bovine retinal rod outer segment cGMP-specific phosphodiesterase by the transducin-GTP complex in a physiologically significant range of free calcium ion concentrations

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The kinetic behavior of cGMP-specific phosphodiesterase in a totally bleached bovine retinal rod outer segment suspension was studied by the pH-metric method at high and low concentrations of free calcium ions (≈100 μM and <10 nM, respectively). The phosphodiesterase was activated by low GTP concentrations (∼1–2 μM) that were comparable with the concentration of G-protein transducin, the GTP-binding alpha-subunit of which is the intrinsic activator of photoreceptor phosphodiesterase. The results allow the suggestion that, besides the earlier described system of RGS proteins participating in acceleration of GTP hydrolysis, rod outer segments also contain an additional Ca2+-dependent mechanism to inactivate so-called “free” transducin, i.e. active transducin that has not managed to interact with phosphodiesterase within the time restricted by the duration of photoreceptor response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Stryer, Annu. Rev. Neurosci. 9, 87 (1986).

    Article  Google Scholar 

  2. L. Stryer, J. Biol. Chem. 266, 10711 (1991).

    Google Scholar 

  3. V. Y. Arshavsky, T. D. Lamb, and E. N. Pugh, Jr., Annu. Rev. Physiol. 64, 153 (2002).

    Article  Google Scholar 

  4. E. N. Pugh Jr. and T. D. Lamb, Biochim. Biophys. Acta 1141(2–3), 111 (1993).

    Article  Google Scholar 

  5. E. E. Fesenko, S. S. Kolesnikov, and A. L. Lyubarsky, Nature 313, 310 (1985).

    Article  ADS  Google Scholar 

  6. K.-W. Yau, and K. Nakatani, Nature 309, 352 (1984).

    Article  ADS  Google Scholar 

  7. A. L. Hodgkin, P. A. McNaughton, and B. J. Nunn, J. Physiol. 358, 447 (1985).

    Article  Google Scholar 

  8. K.-W. Yau and K. Nakatani, Nature 311, 661 (1984).

    Article  ADS  Google Scholar 

  9. A. L. Hodgkin, P. A. McNaughton, and B. J. Nunn, J. Physiol. 391, 347 (1987).

    Article  Google Scholar 

  10. L. Cervetto, L. Lagnado, R. J. Perry, et al., Nature 337, 740 (1989).

    Article  ADS  Google Scholar 

  11. K.-W. Yau and K. Nakatani, Nature 313, 579 (1985).

    Article  ADS  Google Scholar 

  12. P. A. McNaughton, L. Cervetto, and B. J. Nunn, Nature 322, 261 (1986).

    Article  ADS  Google Scholar 

  13. E. N. Pugh Jr. and T. D. Lamb, in Handbook of Biological Physics, Ed. by D. G. Stavenga, E. N. Pugh Jr., and W. J. de Grip (Elsevier Science B.V., Amsterdam, 2000), Chapter 5, 183.

  14. M. E. Burns and E. N. Pugh Jr., Physiology (Bethesda) 25, 72 (2010).

    Article  Google Scholar 

  15. M. E. Burns and V. Y. Arshavsky, Neuron 48, 387 (2005).

    Article  Google Scholar 

  16. V. Yu. Arshavsky, M. P. Gray-Keller, and M. D. Bownds, J. Biol. Chem. 266, 18530 (1991).

    Google Scholar 

  17. D. A. Baylor, T. D. Lamb, and K.-W. Yau, J. Physiol. 288, 613 (1979).

    Google Scholar 

  18. J. K. Angleson and T. G. Wensel, Neuron 11, 939 (1993).

    Article  Google Scholar 

  19. J. K. Angleson, and T. G. Wensel, J. Biol. Chem. 269, 16290 (1994).

    Google Scholar 

  20. W. He, C. W. Cowan, and T. G. Wensel, Neuron 20, 95 (1998).

    Article  Google Scholar 

  21. W. He, L. Lu, X. Zhang, et al., J. Biol. Chem. 275, 37093 (2000).

    Article  Google Scholar 

  22. C. W. Cowan, W. He, and T. G. Wensel, Prog. Nucleic Acid Res. Mol. Biol. 65, 341 (2000).

    Article  Google Scholar 

  23. C. W. Cowan, T. G. Wensel, and V. Y. Arshavsky, Methods Enzymol. 315, 524 (2000).

    Article  Google Scholar 

  24. V. Z. Slepak, Prog. Mol. Biol. Transl. Sci. 86, 157 (2009).

    Article  Google Scholar 

  25. C. W. Cowan, R. N. Fariss, I. Sokal, et al., Proc. Natl. Acad. Sci. USA 95, 5351 (1998).

    Article  ADS  Google Scholar 

  26. N. Ya. Orlov, E. V. Kalinin, T. G. Orlova, and et al., Biochim. Biophys. Acta 954, 325 (1988).

    Article  Google Scholar 

  27. V. G. Tishchenkov, Candidate’s Dissertation in Biology (Minsk, 1883).

    Google Scholar 

  28. R. Yee and P. A. Liebman, J. Biol. Chem. 253, 8902 (1978).

    Google Scholar 

  29. P. A. Liebman and A. T. Evanczuk, Methods Enzymol. 81, 532 (1982).

    Article  Google Scholar 

  30. http://maxchelator.stanford.edu

  31. M. M. Bradford, Anal. Biochem. 72, 248 (1976).

    Article  Google Scholar 

  32. N. Ya. Orlov, Systems of Phototransduction of Vertebrate Retinal Rods and Cones. Molecular Mechanisms (LAP LAMBERT Academic Publishing GmbH & Co KG, Saarbrücken, Deutschland, 2011).

    Google Scholar 

  33. H. Kuhn, Nature 283, 587 (1980).

    Article  ADS  Google Scholar 

  34. N. Ya. Orlov, A. A. Freidin, D. N. Orlov, et al., Abstr. Internat. Conf. “Reception and Intracellular Signaling” (Izd. IBK RAN, Pushchino, 1998), pp. 108–110.

    Google Scholar 

  35. K.-W. Koch, J. Biol. Chem. 266, 8634 (1991).

    Google Scholar 

  36. K. Palczewski, J. H. McDowell, and P. A. Hargrave, J. Biol. Chem. 263, 14067 (1988).

    Google Scholar 

  37. U. Laitko and K. P. Hofmann, Biophys. J. 74, 803 (1998).

    Article  ADS  Google Scholar 

  38. K.-W. Koch and L. Stryer, Nature 334, 64 (1988).

    Article  ADS  Google Scholar 

  39. K.-W. Koch, F. Eckstein, and L. Stryer, J. Biol. Chem. 265, 9659 (1990).

    Google Scholar 

  40. K. Palczewski, J. H. McDowell, and P. A. Hargrave, J. Biol. Chem. 263, 14067 (1988).

    Google Scholar 

  41. J. Buczy ko, C. Gutmann, and K. Palczewski, Proc. Natl. Acad. Sci. USA 88, 2568 (1991).

    Article  ADS  Google Scholar 

  42. L. A. Astakhova, M. L. Firsov, and V. I. Govardovskii, J. Gen. Physiol. 132, 587 (2008).

    Article  Google Scholar 

  43. M. L. Firsov, Doctoral Dissertation in Biology (St. Petersburg, 2012).

    Google Scholar 

  44. V. M. Grishchenko, T. G. Orlova, A. A. Freidin, et al., Dokl. AN SSSR 307, 1498 (1989).

    Google Scholar 

  45. A. M. Dizhur, E. N. Nekrasova, and P. P. Filippov, Biokhimiia (Moscow) 56, 225 (1991a).

    Google Scholar 

  46. A. M. Dizhoor, S. Ray, S. Kumar, S., et al., Science 251, 915 (1991).

    Article  ADS  Google Scholar 

  47. S. Kawamura, Nature 362, 855 (1993).

    Article  ADS  Google Scholar 

  48. S. Kawamura, O. Hisatomi, S. Kayada, et al., J. Biol. Chem. 268, 14579 (1993).

    Google Scholar 

  49. W. A. Gorczyca, M. P. Gray-Keller, P. B. Detwiler, and K. Palczewski, Proc. Natl. Acad. Sci. USA 91, 4014 (1994).

    Article  ADS  Google Scholar 

  50. A. M. Dizhoor, D. G. Lowe, E. V. Olshevskaya, et al., Neuron 12, 1345 (1994).

    Article  Google Scholar 

  51. A. M. Dizhoor, E. M. Olshevskaya, W. J. Henzel, et al., J. Biol. Chem. 270, 25200 (1995).

    Article  Google Scholar 

  52. M. A. Kutuzov and N. Bennett, Eur. J. Biochem. 238, 613 (1996)

    Article  Google Scholar 

  53. H. Ohguro, M. Rudnicka-Nawrot, J. Buczylko, et al., J. Biol. Chem. 271, 5215 (1996).

    Article  Google Scholar 

  54. G. Hu, G.-F. Jang, C.W. Cowan, et al., J. Biol. Chem. 276, 22287 (2001).

    Article  Google Scholar 

  55. T. G. Wensel, Adv. Exp. Med. Biol. 514, 125 (2002).

    Article  Google Scholar 

  56. I. Sokal, G. Hu, Y. Liang, et al., J. Biol. Chem. 278, 8316 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Petrukhin.

Additional information

Original Russian Text © O.V. Petrukhin, T.G. Orlova, A.R. Nezvetsky, N.Ya. Orlov, 2014, published in Biofizika, 2014, Vol. 59, No. 5, pp. 854–861.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrukhin, O.V., Orlova, T.G., Nezvetsky, A.R. et al. Activation of bovine retinal rod outer segment cGMP-specific phosphodiesterase by the transducin-GTP complex in a physiologically significant range of free calcium ion concentrations. BIOPHYSICS 59, 694–699 (2014). https://doi.org/10.1134/S0006350914050200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914050200

Keywords

Navigation