Skip to main content
Log in

The phosphorylation state of transducin beta-subunits

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The supposition that nucleoside diphosphate kinase is the enzyme that phosphorylates transducin beta-subunits at one of the histidine residues (His 266) has been analyzed. It is based on the reasons that (1) this enzyme is multifunctional and plays in particular the role of protein histidine kinase; and (2) the phosphorylated beta-subunit of transducin may activate transducin via the mechanism of transphosphorylation. Nevertheless, in our experiments, in which different forms of transducin preparations were incubated with α- and β-isoforms of recombinant rat NDP kinase in the presence of [γ32P]ATP or [γ32P]GTP (specific activity of about 1 Ci/mmol) followed by separation of proteins by electrophoresis and gel radio-autography, we have not succeeded in observing phosphorylation of the transducin beta-subunit. The negative result of our experiments most likely implies that the major part of transducin beta-subunits in the preparations has already been phosphorylated via a process that takes place in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Stryer, Annu. Rev. Neurosci. 9, 87 (1986).

    Article  Google Scholar 

  2. L. Stryer, J. Biol. Chem. 266, 10711 (1991).

    Google Scholar 

  3. E. N. Pugh, Jr. and T. D. Lamb, Biochim. Biophys. Acta 1141 (1993).

  4. E. N. Pugh, Jr. and T. D. Lamb, in Handbook of Biological Physics, Ed. by D.G. Stavenga, E.N. Pugh, Jr., and W.J. de Grip (Elsevier Science B.V., Amsterdam, 2000), Chapter 5, 183.

  5. V. Yu. Arshavsky, T. D. Lamb, and E. N. Pugh, Jr., Annu. Rev. Physiol. 64, 153 (2002).

    Article  Google Scholar 

  6. E. E. Fesenko, S. S. Kolesnikov, and A. L. Lyubarsky, Nature 313, 310 (1985).

    Article  ADS  Google Scholar 

  7. V. G. Tishchenkov and N. Ya. Orlov, Mol. Biol. 18, 776 (1984).

    Google Scholar 

  8. V. G. Tishchenkov, L. O. Grumbkova, and N. Ya. Orlov, Dokl. AN SSSR 268, 735 (1982).

    Google Scholar 

  9. T. Wieland, B. Nürnberg, I. Ulibarri, et al., J. Biol. Chem. 268, 18111 (1993).

    Google Scholar 

  10. T. Wieland, I. Ulibarri, P. Gierschik, et al., Eur. J. Biochem. 196, 707 (1991).

    Article  Google Scholar 

  11. F. Cuello, R. A. Schulze, F. Heemeyer, et al., J. Biol. Chem. 278, 7220 (2003).

    Article  Google Scholar 

  12. H. J. Hippe, S. Lutz, F. Cuello, et al., J. Biol. Chem. 278, 7227 (2003).

    Article  Google Scholar 

  13. A. Kowluru, S. E. Seavey, C. J. Rhodes, et al., Biochem. J. 313, 97 (1996).

    Google Scholar 

  14. J. F. Klinker and R. Seifert, Eur. J. Biochem. 261, 72 (1999).

    Article  Google Scholar 

  15. P. S. Steeg, D. Palmieri, T. Ouatas, et al., 190, 1 (2003).

  16. P. S. Steeg, A. de la Rosa, U. Flatow, et al., Breast Cancer Res. Treat. 25, 175 (1993).

    Article  Google Scholar 

  17. N. Kimura, N. Shimada, M. Fukuda, et al., J. Bioenerg. Biomembr. 32, 309 (2000).

    Article  Google Scholar 

  18. D. N. Orlov and N. Ya. Orlov, Biophysics 53, 482 (2008).

    Article  Google Scholar 

  19. N. Ya. Orlov, T. G. Orlova, K. Nomura, et al., FEBS Lett. 389, 186 (1996).

    Article  Google Scholar 

  20. N. Ya. Orlov, T. G. Orlova, Ya. K. Reshetnyak, et al., 41, 189 (1997).

  21. N. Ya. Orlov and N. Kimura, Biokhimiya 63, 171 (1998).

    Google Scholar 

  22. N. Ya. Orlov, Y. Ishijima, D. N. Orlov, et al., Biochemistry (Moscow) 72, 835 (2007).

    Article  Google Scholar 

  23. S. Klumpp and J. Krieglstein, Sci. Signal. 2, 1 (2009).

    Article  Google Scholar 

  24. S. Klumpp, G. Bechmann, A. Maurer, et al., Biochem. Biophys. Res. Commun. 306, 110 (2003).

    Article  Google Scholar 

  25. S. Srivastava, Z. Li, K. Ko, et al., Mol. Cell. 24, 665 (2006).

    Article  Google Scholar 

  26. A. M. Gilles, E. Presecan, A. Vonica, et al., J. Biol. Chem. 266, 8784 (1991).

    Google Scholar 

  27. T. Fukuchi, N. Shimada, N. Hanai, et al., Biochem. Biophys. Acta 1265, 113 (1994).

    Google Scholar 

  28. N. Ya. Orlov, E. V. Kalinin, T. G. Orlova, et al., Biochim. Biophys. Acta 954, 325 (1988).

    Article  Google Scholar 

  29. H. Kuhn, Nature 283, 587 (1980).

    Article  ADS  Google Scholar 

  30. H. Kuhn, Curr. Top. Membr. Transp. 15, 171 (1981).

    Article  Google Scholar 

  31. J. W. Clack, M. Juhl, C. A. Rice, et al., Electrophoresis 24, 3493 (2003).

    Article  Google Scholar 

  32. J. W. Clack, M. L. Springmeyer, C. R. Clark, et al., Cell Biol. Int. 30, 829 (2006).

    Article  Google Scholar 

  33. D. N. Orlov, T. G. Orlova, A. R. Nezvetsky, et al., Biophysics (Moscow) 55, 908 (2010).

    Article  Google Scholar 

  34. Y. Ishijima, N. Shimada, M. Fukuda, et al., FEBS Lett. 445, 155 (1999).

    Article  Google Scholar 

  35. N. Kimura and N. Shimada, J. Biol. Chem. 263, 4647 (1988).

    Google Scholar 

  36. E. E. Fesenko, N. Ya. Orlov, and L. Ya. Satina, Mol. Biol. 14, 787 (1980).

    Google Scholar 

  37. R. N. Lolley, B. M. Brown, et al., Biochem. Biophys. Res. Commun. 78, 572 (1977).

    Article  Google Scholar 

  38. U. K. Laemmli, Nature 227, 680 (1970).

    Article  ADS  Google Scholar 

  39. J. F. Wilkins, M. W. Bitensky, and B. M. Willardson, J. Biol. Chem. 271, 19232 (1996).

    Article  Google Scholar 

  40. J. Buczylko, C. Gutmann, and K. Palczewski, Proc. Natl. Acad. Sci. USA 88, 2568 (1991).

    Article  ADS  Google Scholar 

  41. K. Palczewski, J. H. McDowell, and P. A. Hargrave, J. Biol. Chem. 263, 1406 (1988).

    Google Scholar 

  42. P. Ek, G. Pettersson, B. Ek, et al., Eur. J. Biochem. 269, 5016 (2002).

    Article  Google Scholar 

  43. A. Mäurer, T. Wieland F. Meissl, et al., Biochem. Biophys. Res. Commun. 334, 1115 (2005).

    Article  Google Scholar 

  44. T. Wieland, M. Ronzani, and K. H. Jakobs, J. Biol. Chem. 267, 20791 (1992).

    Google Scholar 

  45. N. Ya. Orlov, Systems of Phototransduction of Vertebrate Retinal Rods and Cones. Molecular Mechanisms (LAP LAMBERT Academic Publishing GmbH & Co KG, Saarbrücken, Deucschland, 2011)

    Google Scholar 

  46. B. K.-K. Fung and L. Stryer, Proc. Natl. Acad. Sci. USA 77, 2500 (1980).

    Article  ADS  Google Scholar 

  47. A. B. Fawzi and J. K. Northup, Biochem. 29, 3804 (1990).

    Article  Google Scholar 

  48. N. Ya. Orlov, A. A. Freidin, D. N. Orlov, et al., Abstr. Internat. Conf. “Reception and Intracellular Signaling” (Izd. IBK RAN, Pushchino, 1998), pp. 108–110.

    Google Scholar 

  49. S. Mukhopadhyay and E. M. Ross, Proc. Natl. Acad. Sci. USA 96, 9539 (1999).

    Article  ADS  Google Scholar 

  50. H.-J. Wieden, K. Gromadski, D. Rodnin, et al., J. Biol. Chem. 277, 6032 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Orlov.

Additional information

Original Russian Text © D.N. Orlov, A.R. Nezvetsky, T.G. Orlova, O.V. Petrukhin, N.Ya. Orlov, 2014, published in Biofizika, 2014, Vol. 59, No. 5, pp. 837–842.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, D.N., Nezvetsky, A.R., Orlova, T.G. et al. The phosphorylation state of transducin beta-subunits. BIOPHYSICS 59, 681–684 (2014). https://doi.org/10.1134/S0006350914050194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914050194

Keywords

Navigation