Skip to main content
Log in

Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board “Bion-M1” biosatellite

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the “BION-M1” biosatellite (Russia, 2013). The dissection was made after 13–16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. Thornton, T. P. Moore, and S. L. Pool, Aviat. Space Environ. Med. 58, (1987).

  2. D. E. Watenpaugh and A. R. Hargens, Handbook of Physiology. Environmental Physiology, Am. Physiol. Soc. 4 (vol. I, pt. 3, chapt. 29), (1996).

    Google Scholar 

  3. J. V. Nixon, R. G. Murray, C. Bryant, et al., J. Appl. Physiol. 46(3), (1979).

    Google Scholar 

  4. M. W. Bungo, D. J. Goldwater, R. L. Popp, et al., J. Appl. Physiol. 62(1), (1987).

    Google Scholar 

  5. J. B. Charles and C. M. Lathers, J. Clin. Pharmacol. 31(10), (1991).

    Google Scholar 

  6. F. W. Booth and J. R. Kelso, Pflügers Arch. 342(3), (1973).

    Google Scholar 

  7. D. Desplanches, M. H. Mayet, E. I. Ilyina-Kakueva, et al., J. Appl. Physiol. 68(1), (1990).

    Google Scholar 

  8. V. J. Caiozzo, F. Haddad, M. J. Baker, et al., J. Appl. Physiol. 81(1), (1996).

    Google Scholar 

  9. J. J. Widrick, G. G. Maddalozzo, H. Hu, et al., Am. J. Physiol. Regul. Integr. Comp. Physiol. 295(5), (2008).

    Google Scholar 

  10. K. Lee, Y. S. Lee, M. Lee, et al., Yonsei Med. J. 45(4), (2004).

    Google Scholar 

  11. K. S. McDonald and R. H. Fitts, J. Appl. Physiol. 79(5), (1995).

    Google Scholar 

  12. D. A. Riley, S. Ellis, G. R. Slocum, et al., J. Appl. Physiol. 81(1), (1996).

    Google Scholar 

  13. D. A. Riley, E. I. Ilyina-Kakueva, S. Ellis, et al., FASEB J. 4(1), (1990).

    Google Scholar 

  14. D. A. Riley, S. Ellis, J. F. Giometti, et al., J. Appl. Physiol. 73(2 Suppl), (1992).

    Google Scholar 

  15. D. A. Riley, J. L. Thompson, B. B. Krippendorf, et al., Basic Appl. Myol. 5(2), (1995).

    Google Scholar 

  16. D. A. Riley, J. L.W. Bain, J. L. Thompson, et al., J. Appl. Physiol. 88(2), (2000).

    Google Scholar 

  17. I. M. Vikhlyantsev, A. D. Okuneva, M. D. Shpagina, et al., Biokhimiya 76(12), (2011).

    Google Scholar 

  18. A. D. Okuneva, I. M. Vikhlyantsev, M. D. Shpagina, et al., Biophysics 57, 581 (2012).

    Article  Google Scholar 

  19. C. P. Ingalls, G. L. Warren, and R. B. Armstrong, J. Appl. Physiol. 87(1), (1999).

    Google Scholar 

  20. C. P. Ingalls, J. C. Wenke, and R. B. Armstrong, Aviat. Space Environ. Med. 72(5), (2001).

    Google Scholar 

  21. I. V. Ogneva, V. A. Kurushin, E. G. Altaeva, et al., J. Muscle Res. Cell Motil. 30(7–8), (2009).

    Google Scholar 

  22. D. L. Enns, T. Raastad, I. Ugelstad, et al., Eur. J. Appl. Physiol. 100(4), (2007).

    Google Scholar 

  23. E. G. Altaeva, L. A. Lysenko, N. P. Kantserova, et al., Dokl. Biol. Sci. 433, (2010).

  24. D. Paulin and Z. Li, Exp. Cell Res. 301(1), (2004).

    Google Scholar 

  25. S.C. Lieber, N. Aubry, J. Pain, et al., Am. J. Physiol. Heart Circ. Physiol. 287(2), (2004).

    Google Scholar 

  26. J. Zhu, T. Sabharwal, A. Kalyanasundaram, et al., J. Biomech. 42(13), (2009).

    Google Scholar 

  27. L. Stevens, X. Holy, and Y. Mounier, Am. J. Physiol. 264(4 Pt 2), (1993).

    Google Scholar 

  28. I. V. Ogneva, D. V. Lebedev, and B. S. Shenkman, Biophys. J. 98(3), (2010).

    Google Scholar 

  29. R. Vitorino, R. Ferreira, M. Neuparth, et al., Anal. Biochem. 366(2), (2007).

    Google Scholar 

  30. H. Towbin and T. Staehlin, J. Gordon, Proc. Natl. Acad. Sci. USA 76(9), (1979).

    Google Scholar 

  31. E. K. Alford, R. R. Roy, J. A. Hodgson, et al., Exp. Neurol. 96(3), (1987).

    Google Scholar 

  32. I. V. Ogneva, J. Appl. Physiol. 109(6), (2010).

    Google Scholar 

  33. I. V. Ogneva, J. Biomed. Biotechnol. Article ID 393405, (2011).

    Google Scholar 

  34. I. V. Ogneva, T. M. Mirzoev, N. S. Biryukov, et al., J. Biomed. Biotechnol. Article ID 659869, (2012).

    Google Scholar 

  35. I. V. Ogneva, BioMed. Res. Int. Article ID 598461, (2013).

    Google Scholar 

  36. M. Suzuki, K. Miyazaki, M. Ikeda, et al., J. Membr. Biol. 134(1), (1993).

    Google Scholar 

  37. E. M. Schwiebert, J. W. Mills, and B. A. Stanton, J. Biol. Chem. 269(10), (1994).

    Google Scholar 

  38. P. Devarajan, D. A. Scaramuzzino, and J. S. Morrow, Proc. Natl. Acad. Sci. USA 91(8), (1995).

    Google Scholar 

  39. Y. Srinivasan, L. Elmer, J. Davis, et al., Nature 333(6169), (1988).

    Google Scholar 

  40. D. J. Benos, M. S. Awayda, I. I. Ismailov, et al., J. Membr. Biol. 143(1), (1995).

    Google Scholar 

  41. Yu. A. Negulyaev, E. A. Vedernikova, and A. V. Maximov, Mol. Biol. Cell 7(12), (1996).

    Google Scholar 

  42. A. V. Maximov, E. A. Vedernikova, H. Hinssen, et al., FEBS Lett. 412(1), (1997) a.

    Google Scholar 

  43. A. V. Maximov, E. A. Vedernikova, and Yu. A. Negulyaev, Biophys. J. 72(2), (1997) b.

    Google Scholar 

  44. K. Kuwahara, M. Takano, and K. Nakao, J. Pharmacol. Sci. 99(3), (2005).

    Google Scholar 

  45. A. Chopard, N. Arrighi, A. Carnino, et al., FASEB J. 19(12), (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Ogneva.

Additional information

Original Russian Text © I.V. Ogneva, M.V. Maximova, I.M. Larina, 2014, published in Biofizika, 2014, Vol. 59, No. 5, pp. 983–989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogneva, I.V., Maximova, M.V. & Larina, I.M. Desmin content and transversal stiffness of the left ventricle mouse cardiomyocytes and skeletal muscle fibers after a 30-day space flight on board “Bion-M1” biosatellite. BIOPHYSICS 59, 800–805 (2014). https://doi.org/10.1134/S0006350914050182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914050182

Keywords

Navigation