Skip to main content
Log in

Redox-dependent ferric oxide nanoparticles loaded with doxorubicin and their influence on the functions of mitochondria

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The spectral, fluorescent and functional properties of ferric oxide and ferric hydroxide nanoparticles loaded with doxorubicin and stabilized with citric acid or lysine were studied in comparison with free doxorubicin. Their effect on the opening of calcium-induced mitochondrial pore and the possibility of controlled release of doxorubicin under the influence of redox stimuli were investigated. The data show that the effect of nanoparticles on mitochondria depends on the type of stabilizer. The spectral and fluorescence methods used allow us to estimate the presence or absence of free doxorubicin in solution of nanoparticles and the concentration of bound doxorubicin. It is shown that dithiothreitol and glutathione increase the amplitude of absorption and fluorescence of doxorubicin during incubation with nanoparticles. It is assumed that this effect may be associated with the reduction of oxidized iron by thiols with subsequent release of doxorubicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Szewczyk and L. Wojtczak, Pharmacol. Rev. 54(1), 101 (2002).

    Article  Google Scholar 

  2. N. I. Fedotcheva, V. V. Teplova, T. A. Fedotcheva, et al., Biochem. Pharm. 78(8), 1060 (2009).

    Article  Google Scholar 

  3. P. Costantini, E. Jacotot, D. Decaudin, and G. Kroemer, J. Natl. Cancer Inst. 92, 1042 (2000).

    Article  Google Scholar 

  4. A. V. Kuznetsov, R. Margreiter, A. Amberger, et al., Biochim. Biophys. Acta 1813, 1144 (2011).

    Article  Google Scholar 

  5. N. I. Fedotcheva, V. A. Bykov, V. V. Banin, et al., J. Clin. Toxicol. S:7 http://dx.doi.org/10.4172/2161-0495.S7-002 (2011).

    Google Scholar 

  6. X. Xu, H. L. Persson, and D. R. Richardson, Mol. Pharmacol. 68(2), 261 (2005).

    Google Scholar 

  7. G. Minotti, P. Menna, E. Salvatorelli, et al., Pharmacol. Rev. 56(2), 185 (2004).

    Article  Google Scholar 

  8. A. K. Rines and H. Ardehali, J. Mol. Cell. Cardiol. 55, 50 (2013).

    Article  Google Scholar 

  9. L. A. Gilliam, K. H. Fisher-Wellman, C. T. Lin, et al., Free Radic. Biol. Med. 65, 988 (2013).

    Article  Google Scholar 

  10. G. C. Pereira, S. P. Pereira, C. V. Pereira, et al., PLoS One. 7(6):e38867. doi: 10.1371/journal.pone.0038867 (2012).

    Article  ADS  Google Scholar 

  11. B. B. Hasinoff, Biochem. J. 265(3), 865 (1990).

    Google Scholar 

  12. V. P. Torchilin, Adv. Drug Delivery Rev. 64, 302 (2012).

    Article  Google Scholar 

  13. S. Yu, G. Wu, X. Gu, et al., Colloids Surf. B Biointerfaces 103, 15 (2013).

    Article  Google Scholar 

  14. R. Lehner, X. Wang, M. Wolf, and P. Hunziker, J. Control Release 161(2), 307 (2012).

    Article  Google Scholar 

  15. N. I. Fedotcheva, E. V. Odintsova, V. V. Banin, and N. L. Shimanovskii, Vestn. Ros. Onkol. Nauch. Ts. im. Blokhina RAMN 4, 34 (2011).

    Google Scholar 

  16. X. Zeng, R. Morgenstern, and A. M. Nyström, Biomaterials 35, 1227 (2014).

    Article  Google Scholar 

  17. C. Xu and S. Sun, Adv. Drug Delivery Rev. 65, 732 (2013).

    Article  Google Scholar 

  18. T. A. Fedotcheva, N. I. Fedotcheva, V. V. Teplova, et al., Vopr. Biol. Med. Farmats. Khimii 11, 158 (2013).

    Google Scholar 

  19. D. R. Phillips, W. Teng, A. Arfsten, et al., Circulation 96(5), 1488 (1997).

    Article  Google Scholar 

  20. M. N. Kondrashova, M. V. Zakharchenko, N. V. Khunderyakova, et al., Biophysics 58, 86 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Fedotcheva.

Additional information

Original Russian Text © T.A. Fedotcheva, A.G. Akopdjanov, N.L. Shimanovskii, V.V. Mingalev, V.V. Banin, A.A. Zemlanaya, V.V. Teplova, N.I. Fedotcheva, 2014, published in Biofizika, 2014, Vol. 59, No. 5, pp. 902–906.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotcheva, T.A., Akopdjanov, A.G., Shimanovskii, N.L. et al. Redox-dependent ferric oxide nanoparticles loaded with doxorubicin and their influence on the functions of mitochondria. BIOPHYSICS 59, 732–735 (2014). https://doi.org/10.1134/S0006350914050078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914050078

Keywords

Navigation