Advertisement

Biophysics

, Volume 59, Issue 4, pp 524–530 | Cite as

Influence of dissolved gases on highly diluted aqueous media

  • L. V. Belovolova
  • M. V. Glushkov
  • E. A. Vinogradov
Molecular Biophysics

Abstract

In the experiments on redox potential measurement for a series of identical samples of purified and presettled water it was found that the response to ultraviolet irradiation varies appreciably within a few days after treatment, including stepwise changes. In a few hours after exposure, leading to a higher content of reactive oxygen species as compared with the equilibrium values, long-term changes including variations in redox potential and optical system parameters are recorded in water and diluted aqueous media. We propose a heuristic organization model of the water-gas system with an increased content of reactive oxygen species.

Keywords

water highly diluted aqueous media ROS potentiometry UV luminescence Rayleigh scattering fluctuations in parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Pashley, J. Phys. Chem. B 107, 1714 (2003).CrossRefGoogle Scholar
  2. 2.
    M. Colic and D. Morse, Colloids and Surfaces A 154, 167 (1999).CrossRefGoogle Scholar
  3. 3.
    P. Vallee, J. Lafait, L. Legrand, et al., Langmuir 21, 2293 (2005).CrossRefGoogle Scholar
  4. 4.
    M. A. Margulis, Acoustochemical Reactions and Sonoluminescence (Khimiya, Moscow, 1986) [in Russian].Google Scholar
  5. 5.
    D. Ch. Kim, Zh. Tekhn. Fiziki 77(6), 8 (2007).Google Scholar
  6. 6.
    Ye. Zhen, Phys. Rev. E 56(2), 2318 (1997).CrossRefGoogle Scholar
  7. 7.
    R. M. Pashley, M. R. Zechowicz, L. R. Pashley, et al., J. Phys. Chem. B 109, 1231 (2005).CrossRefGoogle Scholar
  8. 8.
    E. N. Brodskaya and V. V. Zakharov, Zh. Fiz. Khimii 69(6), 1039 (1995).Google Scholar
  9. 9.
    N. F. Bunkin and F. V. Bunkin, Zh. Eksper. Teoret. Fiziki 101, 512 (1992).Google Scholar
  10. 10.
    L. V Belovolova, M. V. Glushkov, G. I. Vinogradova, and E. A. Vinogradov, Phys. Wave Phenomena 16(4), 292 (2008).CrossRefADSGoogle Scholar
  11. 11.
    L. V. Belovolova, M. V. Glushkov, E. A. Vinogradov, et al., Phys. Wave Phenomena 17(1), 21 (2009).CrossRefADSGoogle Scholar
  12. 12.
    L. V. Belovolova, E. A. Vinogradov, and M. V. Glushkov, Phys. Wave Phenomena 21(3), 183 (2013).CrossRefADSGoogle Scholar
  13. 13.
    L. V. Belovolova, E. A. Vinogradov, and M. V. Glushkov, Phys. Wave Phenomena 21(3), 190 (2013).CrossRefADSGoogle Scholar
  14. 14.
    V. L. Voeikov, Do Ming Ha, O. G. Mukhitova, et al., Int. J. of Design & Nature and Ecodynamics. WIT Press (United Kingdom) 5(1), 30 (2010).CrossRefGoogle Scholar
  15. 15.
    A. V. Reshetnyak and E. Blazheiovski, in Electrochemistry of Orgainic Ompounds in Early XXI Century (Moscow, 2008), p. 6 [in Russian].Google Scholar
  16. 16.
    L. V. Belovolova, M. V. Glushkov, and E. A. Vinogradov, Biophysics 56(2), 181 (2011).CrossRefGoogle Scholar
  17. 17.
    J. A. Fee and J. S. Valentine, in Superoxide and Superoxide Dismutases, Ed. A. M. Michelson, J. M. McCord, I. Fridovich (Ac. Pr., L.N-Y.S-F, 1977), p. 19.Google Scholar
  18. 18.
    A. F. Vanin, Nitric Oxide: Biology and Chemistry 21(1), 1 (2009). http://www.sciencedirect.com/science/article/pii/S1089860309000391 CrossRefGoogle Scholar
  19. 19.
    J. Kerr, J. Calvert, and K. Demerjian, in Free Radical in Biology, Ed. by W. Prior (Mir, Moscow, 1979), vol. 2, p. 178 [in Russian].Google Scholar
  20. 20.
    N. A. Aristova, I. P. Ivanova, S. V. Trofimova, et al., Preprint INP MSU Moscow no. 2011-12/876 (2011).Google Scholar
  21. 21.
    V. I. Tikhonov and A. A. Volkov, Science 296, 2363 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2014

Authors and Affiliations

  • L. V. Belovolova
    • 1
  • M. V. Glushkov
    • 1
  • E. A. Vinogradov
    • 1
  1. 1.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations