Skip to main content
Log in

Model of ion diffusion in synaptic cleft based on stochastical integration of langevin equation at dielectric friction approximation

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Changes in the state of the central nervous system, leading to the development of pathological processes, directly are associated with a state of neurons, particularly with their conductivity in synaptic cleft region. The synaptic flexibility plays a key role in environmental adaptation, which manifests in dynamic changes of synaptic properties. However more attention was paid rather to their functional, than physical-chemical properties. We present the results of simulation of potential determining ions in synaptic contact area using Langevin dynamics. Diffusion and self-diffusion coefficients were calculated. It is shown that the range of variability of the diffusion coefficient of ions in perimembrane space, caused by variable viscosity and dielectric conductivity of electrolyte can reach 20%. These physical-chemical synaptic parameters can be considered as relevant for synaptic flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Park and Z. D. Luo, Channels 4, 510 (2010).

    Google Scholar 

  2. M. J. Kennedy and M. D. Ehlers, Ann. Rev. Neurosci. 29, 325 (2006).

    Article  Google Scholar 

  3. M. A. Sutton and E. M. Schuman, Cell 127, 49 (2006), ISSN 00928674

    Article  Google Scholar 

  4. D. A. Feldheim, Y. I. Kim, A. D. Bergeman, et al., Nat. Rev. Neurosci. 4, 456 (2003).

    Article  Google Scholar 

  5. R. C. Malenka, Ann. N.Y. Acad. Sci. 1003, 1 (2003), ISSN 1749-6632.

    Article  ADS  Google Scholar 

  6. R. Frischknecht, M. Heine, D. Perrais, et al., Nature Neurosci. 12, 897 (2009).

    Article  Google Scholar 

  7. C. V. Ly and P. Verstreken, Neurosci. 12, 291 (2006).

    Google Scholar 

  8. Y. Yarom and J. Hounsgaard, Physiol. Rev. 91, 917 (2011).

    Article  Google Scholar 

  9. S. Boronovsky, I. Seraya, and Y. Nartsissov, Systems Biology, IEE Proceedings 153, 394 (2006), ISSN 1741-2471.

    Article  Google Scholar 

  10. S. Boronovsky and Y. Nartsissov, Biophysics 54, 312 (2009), ISSN 0006-3509.

    Article  Google Scholar 

  11. R. Balesku, Equilibrium and Non-equilibrium Statistical Mechanics (Mir, Moscow, 1978) [in Russian].

    Google Scholar 

  12. T. Erdei-Gruz, Transfer Phenomena in Water Solutions (Mir, Moscow, 1976) [in Russian].

    Google Scholar 

  13. J. H. Chen and S. A. Adelman, J. Chem. Phys. 72, 2819 (1980).

    Article  ADS  Google Scholar 

  14. J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, Chem. Phys. Lett. 165, 369 (1990).

    Article  ADS  Google Scholar 

  15. J.-C. Bollinger and T. Yvernault, J. Solution Chem. 14, 605 (1985).

    Article  Google Scholar 

  16. S. H. Lee and J. C. Rasaiah, J. Chem. Phys. 101, 6964 (1994).

    Article  ADS  Google Scholar 

  17. D. A. Turchenkov and M. A. Turchenkov, Kompyut. Isseld. Modelir. 4, 2 (2012).

    Google Scholar 

  18. S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell, and S. H. Lee, J. Phys. Chem. B 102, 4193 (1998).

    Article  Google Scholar 

  19. D. Jiao, C. King, A. Grossfield, et al., J. Phys. Chem. B 110, 18553 (2006).

    Article  Google Scholar 

  20. S. Amira, D. Spangberg, M. Probst, and K. Hermansson, J. Phys. Chem. B 108, 496 (2004).

    Article  Google Scholar 

  21. D. E. Goldsack and R. Franchetto, Can. J. Chem. 55, 1062 (1977).

    Article  Google Scholar 

  22. P. Wang and A. Anderko, Fluid Phase Equilibria 186, 103 (2001).

    Article  Google Scholar 

  23. F. E. Harris and C. T. O’Konski, J. Phys. Chem. 61, 310 (1957).

    Article  Google Scholar 

  24. J. B. Hasted, D. M. Ritson, and C. H. Collie, J. Chem. Phys. 16, 1 (1948).

    Article  ADS  Google Scholar 

  25. S. H. Lee and J. C. Rasaiah, J. Phys. Chem. 100, 1420 (1996).

    Article  Google Scholar 

  26. V. M. Pokrovskii, Human Physiology (Meditsina, 2003) [in Russian].

    Google Scholar 

  27. R. Schmidt and G. Thews, Human Physiology (Springer-Verlag, 1989), ISBN 9780387194325.

    Google Scholar 

  28. L. Squire, Fundamental Neuroscience (Academic Press, 2003), ISBN 9780126603033.

    Google Scholar 

  29. R. O. Calderon, B. Attema, and G. H. DeVries, J. Neurochem. 64, 424 (1995), ISSN 1471-4159.

    Article  Google Scholar 

  30. R. B. Schoch, J. Han, and P. Renaud, Rev. Mod. Phys. 80, 839 (2008).

    Article  ADS  Google Scholar 

  31. N. Akaike and M. Kaneda, J. Neurophys. 62, 1400(1989).

    Google Scholar 

  32. E. R. Nightingale, J. Phys. Chem. 63, 1381 (1959).

    Article  Google Scholar 

  33. S. Obst and H. Bradaczek, J. Phys. Chem. 100, 15677 (1996).

    Article  Google Scholar 

  34. S. Chowdhuri and A. Chandra, J. Chem. Phys. 118, 9719 (2003).

    Article  ADS  Google Scholar 

  35. Z.-Z. Yang and X. Li, J. Phys. Chem. A 109, 3517 (2005).

    Article  ADS  Google Scholar 

  36. L. Yuan-Hui and S. Gregory, Geochim. Cosmochim. Acta 38, 703 (1974).

    Article  ADS  Google Scholar 

  37. R. Mills and V. Lobo, Phys. Sci. Data (Elsevier, 1989), ISBN 9780444416896.

    Google Scholar 

  38. J. H. Wang and S. Miller, J. Am. Chem. Soc. 74, 1611 (1952).

    Article  Google Scholar 

  39. K. Tanaka and M. Nomura, J. Chem. Soc., Faraday Trans. 1 83, 1779 (1987).

    Article  Google Scholar 

  40. A. M. Friedman and J. W. Kennedy, J. Am. Chem. Soc. 77, 4499 (1955).

    Article  Google Scholar 

  41. J. H. Wang, J. Am. Chem. Soc. 74, 1612 (1952).

    Article  Google Scholar 

  42. R. Mills, J. Phys. Chem. 61, 1631 (1957).

    Article  Google Scholar 

  43. R. Mills and A. W. Adamson, J. Am. Chem. Soc. 77, 3454 (1955).

    Article  Google Scholar 

  44. J. H. Wang, J. Am. Chem. Soc. 75, 1769 (1953).

    Article  Google Scholar 

  45. P. A. Lyons and J. F. Riley, J. Am. Chem. Soc. 76, 5216 (1954).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Turchenkov.

Additional information

Original Russian Text © D.A. Turchenkov, S.E. Boronovsky, Ya.R. Nartsissov, 2013, published in Biofizika, 2013, Vol. 58, No. 6, pp. 1013–1021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turchenkov, D.A., Boronovsky, S.E. & Nartsissov, Y.R. Model of ion diffusion in synaptic cleft based on stochastical integration of langevin equation at dielectric friction approximation. BIOPHYSICS 58, 796–803 (2013). https://doi.org/10.1134/S0006350913060195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913060195

Keywords

Navigation