Skip to main content
Log in

Terahertz radiation influence on number and development dynamics of offspring F1 of fruit fly females under stress

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Virgin fruit fly females were stressed by placement into a confined space without food for 2.5 hours. Some flies were subjected to terahertz radiation (0.1–2.2 THz) for the last 30 min. Then females were copulated with males. Offspring F1 from oocytes which were mature or immature at exposure (oviposition in 1–2 or 9–10 days after irradiation) was studied. Stress induces a rejection of the offspring maturation dynamics to imago from external control (offspring of flies which was maintained in standard conditions). In offsping from mature oocytes of irradiated flies the dynamics of male maturation to imago was different from internal control (offspring of stressed unirradiated flies). The number of imago males decreased. The dynamics of female maturation to imago coincides with laboratory control. In offsping from immature oocytes of irradiated flies the dynamics of female and male maturation and the number of flies were not significantly different from the internal control. It was concluded that only mature oocytes are sensitive to THz radiation influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Fedorov and S. S. Popova, Millim. Volny Biol. Med., No. 2, 3 (2006).

    Google Scholar 

  2. V. I. Fedorov, Millim. Volny Biol. Med., No. 3, 5 (2011).

    Google Scholar 

  3. G. J. Wilmink, J. E. Grundt, and J. Infrared, Millimeter and Terahertz Waves 32(10), 1074 (2011).

    Article  Google Scholar 

  4. P. Weightman, Phys. Biol. 9, 053001 (2012).

    Article  ADS  Google Scholar 

  5. Mi Zhengyu, Infrared Phys. 29,(2–4), 631 (1989).

    Article  ADS  Google Scholar 

  6. N. P. Zalyubovskaya, L. M. Chepel’, and V. G. Shakh- bazov, Vestn. Khar’kov. Gosuniv. Ser. Biol. 39(2), 42 (1970).

    Google Scholar 

  7. V. I. Fedorov, A. S. Pogodin, T. D. Dubatolova, et al., Biophysics 46, 293 (2001).

    Google Scholar 

  8. N. E. Gruntenko, Evraz. Entomol. Zh. 7,Suppl. 1, 3 (2008).

    Google Scholar 

  9. I. Yu. Raushenbakh, Genetika 33(8), 1110 (1997).

    Google Scholar 

  10. N. Ya. Weisman and M. D. Golubovsky, Dokl. RAN 419(1), 130 (2008).

    Google Scholar 

  11. P. G. Svetlov and G. F. Korsakova, Zh. Obshch. Biol. 33(1), 32 (1972).

    Google Scholar 

  12. N. E. Gruntenko, M. Bownes, J. Terashimat, et al., Insect Mol. Biol. 12(4), 399 (2003).

    Google Scholar 

  13. I. Yu. Raushenbakh, N. V. Adon’eva, N. E. Gruntenko, et al., Ontogenez 35(5), 366 (2004).

    Google Scholar 

  14. I. B. Mosse, I. P. Anoshenko, I. V. Glushkova, et al., Radiats. Biol. Radioekol. 46(3), 287 (2006).

    Google Scholar 

  15. P. G. Svetlov and G. F. Korsakova, Dokl. AN SSSR 176(1), 226 (1967).

    Google Scholar 

  16. V. D. Antsygin, A. A. Mamrashev, N. A. Nikolaev, et al., Avtometriya 46(3), 110 (2010).

    Google Scholar 

  17. J. M. Bland and D. G. Altman, Br. Med. J. 328(7447), 1073 (2004).

    Article  Google Scholar 

  18. P. F. Rokitskii, Biological Statistics (Vysheishaya Shkola, Minsk, 1973) [in Russian].

    Google Scholar 

  19. N. Ya. Weisman, N. Plus, and M. D. Golubovsky, Ontogenez 38(1), 1 (2007).

    Google Scholar 

  20. T. M. Cheshko and Yu. G. Shkorbatov, in Biological Mechanisms of Aging, Ed. by A. I. Bozhkov (Khar’kovs. Nats. Un-t, Kharkov, 2010), p. 19 [in Russian].

  21. V. A. Geodakyan and S. V. Geodakyan, Zh. Obshch. Biol. 46(2), 201 (1985).

    Google Scholar 

  22. R. C. Sizemore, Cell Develop. Biol. 1(1), 1 (2012).

    Article  Google Scholar 

  23. O. L. Serov, Genetics of Development (Novosib. Gosunt, Novosibirsk, 1998) [in Russian].

    Google Scholar 

  24. I. N. Bekman, Nuclear Medicine (MGU, Moscow, 2006) [in Russian].

    Google Scholar 

  25. V. K. Kiselev, E. M. Kuleshov, Yu. E. Kamenev, et al., in Technics of Millimeter and Submillimeter Ranges of Radiowaves, Ed. by V. K. Kiselev (Kharkov, 1993), pp. 73–78 [in Russian].

  26. V. I. Fedorov, Biomedits. Radioelektronika, No. 2, 17 (2011).

    Google Scholar 

  27. H. Hintzschea and H. Stoppera, Critical Rev. in Environ. Sci. and Technol., http://www.tandfonline.com/doi/abs/10.1080/10643389.2011.574206#tabModule

  28. S. S. Popova, Millim. Volny Biol. Med., No. 3, 53 (2011).

    Google Scholar 

  29. V. M. Orlov, Insects in Electric Fields (Biological Phenomena and Mechanisms of Perception) (Izd. TGU, Tomsk, 1990) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Fedorov.

Additional information

Original Russian Text © V.I. Fedorov, N.Ya. Weisman, E.F. Nemova, A.A. Mamrashev, N.A. Nikolaev, 2013, published in Biofizika, 2013, Vol. 58, No. 6, pp. 1043–1050.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedorov, V.I., Weisman, N.Y., Nemova, E.F. et al. Terahertz radiation influence on number and development dynamics of offspring F1 of fruit fly females under stress. BIOPHYSICS 58, 820–826 (2013). https://doi.org/10.1134/S0006350913060080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913060080

Keywords

Navigation