Skip to main content
Log in

The in vitro influence of the external electrostatic field on the physical parameters of erythrocyte membranes

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The in vitro influence of external electrostatic fields with 200 kV/m tension on the biophysical parameters of the erythrocyte membranes and their ghosts of white outbred rats was studied. The investigation on the parameters of erythrocyte membranes and their ghosts, particularly, their microviscosity, the amount and degree of membrane proteins submersion in lipids, polarity in depth of the membrane bilayer and its viscosity was carried out by the spectrofluorimeteric method using pyrene as a hydrophobic fluorescent probe. The analyses of literature data, findings of the current study and their comparison with the results of our previous works allow of concluding that the in vitro influence of external electrostatic fields with 200 kV/m tension on the erythrocyte membranes and their ghosts occurs at different sites of membrane. It is shown that the preliminary exposure of erythrocytes in external electrostatic fields leads to the changes of the parameters both of a membrane surface layer and the intra-membrane domains. So, the decrease in the strength of peripheral proteins binding to the erythrocyte membranes and the increase in the microviscosity of the lipid bilayer are observed. The influence of the field on the ghosts of intact erythrocytes results in alterations of the studied parameters only of the membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hillert, B. Komodin-Hedman, P. Eneroth, and B. Arnetz, Med. Gen., no. 21, 384 (2001).

    Google Scholar 

  2. M. Zhao, J. Forrester, and C. McCaig, Proc. Natl. Acad. Sci. USA 96(9), 4942 (1999).

    Article  ADS  Google Scholar 

  3. J. Gray, C. Frith, and D. Parker, Bioelectromagnetics 21(8), 575 (2000).

    Article  Google Scholar 

  4. R. Stevens and S. Davis, Enviromental Health Perspectives 104, 135 (1996).

    Google Scholar 

  5. A. Ahlbom, E. Albert, A. Fraser-Smith, et al., New York State Power Line Project Scientific Advisory Panel Final Report (1987).

    Google Scholar 

  6. G. G. Artsruni, Med. Nauka Armenii 40(3), 70 (2000).

    Google Scholar 

  7. G. V. Sahakyan, T. B. Batikyan, and G. G. Artsruni, The New Armenian Med. J. 2(4), 75 (2008).

    Google Scholar 

  8. T. Starke-Peterkovic, N. Turner, P. Else, et al, Am. J. Physiol. 288, 663 (2005).

    Google Scholar 

  9. Z. Vasilkoski, Biol. Phys. 1, 15 (2006).

    Google Scholar 

  10. T. Vassu, D. Fologea, O. Csutak, et al., Roum. Biotechnol. Lett. 9(1), 1541 (2004).

    Google Scholar 

  11. N. Wilkea and B. Maggio, Biophys. Chem. 122(1), 36 (2006).

    Article  Google Scholar 

  12. G. Pogosyan, G. Saakyan, and G. Artsruni, Biol. Zh. Armenii 1–2, 136 (2007).

    Google Scholar 

  13. G. V. Sahakyan and G. G. Artsruni, New Med. Armenian J. 4(3), 140 (2010).

    Google Scholar 

  14. G. G. Artsruni, Doctoral Dissertation in Biology (Yerevan State Univ., Armenia, 2001).

    Google Scholar 

  15. H. T. Weis, Exp. Med. 156(4), 314 (1971).

    Google Scholar 

  16. J. Dodge, C. Mitchell, and D. Hanahan, Arch. Biochem. Biophys. 100(1), 119 (1980).

    Article  Google Scholar 

  17. S. Yu. Tereshchenko, V. I. Prokhorenkov, E. I. Prakhin, et al., RF Patent2187112 (2002).

  18. Yu. A. Vladimirov and G. E. Dobretsov, Fluorescent Probes in Investigation of Biological Membranes (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  19. A. I. Deev, Yu. G. Osis, V. E. Formazyuk, et al., Biofizika 28(4), 629 (1983).

    Google Scholar 

  20. G. E. Dobretsov, Fluorescent Probes in Investigation of Cells, Membranes and Lipoproteins (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  21. V. Ioffe and G. P. Gorbenko, Biophys. Chem. 114, 199 (2005).

    Article  Google Scholar 

  22. M. E. Haque, S. Ray, and A. J. Chakrabarti, Fluoresc. 10, 1 (2000).

    Article  Google Scholar 

  23. M. A. Cooper, J. Mol. Recognit, 117, 286 (2004).

    Article  Google Scholar 

  24. P. A. Janmey and P. K. J. Kinnunen, Trends Cell Biol. (2006), doi:10.1016/j.tcb.2006.08.009.

    Google Scholar 

  25. Y. Bledi, A. Inberg, and M. Linial, Briefings in Functional Genomics and proteomics 2(3), 254 (2003).

    Article  Google Scholar 

  26. A. Budi, F. S. Legge, H. Treutlein, et al, J. Phys. Chem. B. 109(47), 22641 (2005).

    Article  Google Scholar 

  27. F. Toschi, F. Lugli, F. Biscarinid, et al, J. Phys. Chem. B 113(1), 369 (2009).

    Article  Google Scholar 

  28. W. Zhao and R. Yang, Food Chemistry 111(1), 136 (2008).

    Google Scholar 

  29. G. Artsruni, Globus Nauki 1(1), 33 (2001).

    Google Scholar 

  30. S. Change, IEEE Trans. Biomed. Engineering 40(10), 1054 (1993).

    Article  Google Scholar 

  31. P. T. Vernier, Y. Sun, L. Marcu, et al., NSTI-Nanotech 1, 7 (2004).

    Google Scholar 

  32. U. Zimmermann and G. A. Neil, Eds. Boca Raton (FL: CRC, 1996).

    Google Scholar 

  33. S. Lang, Varh. Dtsch. Zool. Ces. 65, 176 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.G. Artsruni, G.V. Sahakyan, G.A. Poghosyan, 2013, published in Biofizika, 2013, Vol. 58, No. 6, pp. 1022–1027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artsruni, G.G., Sahakyan, G.V. & Poghosyan, G.A. The in vitro influence of the external electrostatic field on the physical parameters of erythrocyte membranes. BIOPHYSICS 58, 804–808 (2013). https://doi.org/10.1134/S0006350913060031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913060031

Keywords

Navigation