Skip to main content
Log in

Influence of low-dose-rate red and near-infrared radiations on the level of reactive oxygen species, the genetic apparatus and the tumor growth in mice in vivo

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of low-dose-rate red and near-infrared radiations from the matrix of light emitted diode (650 nm and 850 nm) and a He-Ne laser (633 nm) on activation of the reserve of a natural defense system in the mice exposed to radiation in vivo was studied by the level of reactive oxygen species (ROS) production in blood cells, the induction of cytogenetic adaptive response in bone marrow cells, thymus and spleen, and the rate of Ehrlich ascites carcinoma growth in a solid form. As a positive control animals were irradiated with X-rays by the scheme of the radiation-induced adaptive response (0.1 Gy + 1.5 Gy). The levels of ROS production was assessed in whole blood by luminol-dependent chemiluminescence, of cytogenetic damage — by the “micronucleus test” in the bone marrow, the weight of the thymus and spleen — by index of organ, and the rate of tumor growth — according to its size for 30 days after inoculation. Adaptogenic and anticarcinogenic effects of studied radiations were revealed. The values of these effects were not different from those in animals pre-irradiated with the X-rays. The relationship between the level of ROS production and adaptive response induction in the mice under the influence of non-ionizing radiation was first ascertained. The experimental data obtained may indicate a similar mechanism of induction of protective responses to ionizing and non-ionizing radiations in mice in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Zaichkina, O. M. Rozanova, G. F. Aptikaeva, et al., Radiats. Biol. Radioekol. 41, 514 (2001).

    Google Scholar 

  2. S. I. Zaichkina, O. M. Rozanova, G. F. Aptikaeva, et al., Fundamental Sciences to Medicine. Materials of Conference (Firm “Slovo”, Moscow, 2005), p. 192.

    Google Scholar 

  3. G. D. Zasukhina, Radiats. Biol. Radioekol. 48, 464 (2008).

    Google Scholar 

  4. B. R. Scott, J. Hum. Exp. Toxicol. 27, 163 (2008).

    Article  Google Scholar 

  5. T. I. Karu, Ten Lectures on Basic Science of Laser Phototherapy (Grangesberg Sweden: Prima Books, 2007).

    Google Scholar 

  6. V. M. Chudnovskii, G. N. Leonova, S. A. Skopinov, et al., Biological Models and Physical Mechanisms of Laser Therapy (Dal’nauka, Vladivostok, 2002), p. 157 [in Russian].

    Google Scholar 

  7. V. E. Balakin, S. I. Zaichkina, D. Yu. Klokov, et al., Dokl. RAN 363, 843 (1998).

    Google Scholar 

  8. S. I. Zaichkina, D. Yu. Klokov, O. M. Rozanova, et al., Genetika 34, 1013 (1998).

    Google Scholar 

  9. V. N. Mal’tseva, N. V. Avkhacheva, B. F. Santalov, et al., Tsitologiya 48, 1000 (2006).

    Google Scholar 

  10. B. Descamps-Latscha, A. T. Nguyen, R. M. Golub, et al., Ann. Immunol. (Paris) 133-C, 349 (1982).

    Google Scholar 

  11. R. J. Selvaraj, A. J. Sharra, G. B. Thomas, et al., J. Reticuloendothel Soc. 31, 3 (1982).

    Google Scholar 

  12. S. Menezes, B. Coulomb, C. Lebreton, et al., J. Invest. Dermatol. 111, 629 (1998).

    Article  Google Scholar 

  13. T. Karu, L. Pyatibrat, and G. Kalendo, Int. J. Radiat. Biol. 65, 691 (1994).

    Article  Google Scholar 

  14. P. Cramers, P. Atanasova, H. Vrolijk, et al., Radiat. Res. 164, 383 (2005).

    Article  Google Scholar 

  15. G. D. Zasukhina, I. M. Vasil’eva, T. A. Sinel’shchikova, et al., Fundamental Sciences to Medicine. Materials of Conference (Firm “Slovo”, Moscow, 2004), pp. 217–218.

    Google Scholar 

  16. S. I. Zaichkina, O. M. Rozanova, G. F. Aptikaeva, et al., Fundamental Sciences to Medicine. Materials of Conference (Firm “Slovo”, Moscow, 2004), pp. 215–217.

    Google Scholar 

  17. V. Shapochnikova and Y. Korystov, Scanning Microsc. 9, 1203 (1995).

    Google Scholar 

  18. E. Yu. Lizunova, N. Yu. Vorob’eva, D. V. Gur’ev, et al., VI Congr. on Radiation Investigations (radiobiology, radioecology, radiation safety): Abstracts of Reports (RUDN, Moscow, 2010), p. 159.

    Google Scholar 

  19. T. I. Karu, Uspekhi Sovrem. Biologii 121, 110 (2001).

    Google Scholar 

  20. T. I. Karu, Primary and Secondary Cellular Mechanisms of Laser Therapy // Low-intensity Laser Therapy (TOO Firm “Tekhnika”, 2000), pp. 71–94 [in Russian].

    Google Scholar 

  21. T. I. Karu and S. F. Kolyakov, Photomed. Laser Surg. 23, 355 (2005).

    Article  Google Scholar 

  22. T. I. Karu, Photochemistry and Photobiology 84, 1091 (2008).

    Article  Google Scholar 

  23. L. Filippin, P. J. Magalhaes, G. Di Benedetto, et al., J. Biol. Chem. 10, 1074 (2003).

    Google Scholar 

  24. S. V. Moskvin, Vestn. Novykh Med. Tekhnologii 1, 42 (2008).

    Google Scholar 

  25. A. Yu. Popov, N. A. Popova, and A. V. Tyurin, Optics and Spectroscopy 103, 671 (2007).

    Article  ADS  Google Scholar 

  26. P. Uhlen, A. Laestadius, T. Jahnukainen, et al., Nature 405, 694 (2000).

    Article  ADS  Google Scholar 

  27. R. K. Murrey, D. K. Granner, P. A. Mayes, et al., Harper’s Biochemistry. Appleton & Lange (1996).

    Google Scholar 

  28. I. G. Lyandres, Mechanisms of Stimulation of Low-intensity Laser Radiation (Ekonom. Tekhnologiya, Minsk, 1998) [in Russian].

    Google Scholar 

  29. H. Nagasawa, Y. Udagawa, and S. Kiyokawa, Anticancer Res. 19, 1797 (1999).

    Google Scholar 

  30. H. Nagasawa, Y. Udagawa, and S. Kiyokawa, Anticancer Res. 19, 4125 (1999).

    Google Scholar 

  31. L. J. Hong, W. Yan, and J. C. Jiin, Electromag. Biol. and Med. 20, 299 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Dyukina.

Additional information

Original Russian Text © S.I. Zaichkina, O.M. Rozanova, A.R. Dyukina, N.B. Simonova, S.P. Romanchenko, S.S. Sorokina, G.F. Aptikaeva, V.I. Yusupov, 2013, published in Biofizika, 2013, Vol. 58, No. 5, pp. 897–903.

Editor’s Note: This is the closest possible equivalent of the original publication with all its practical details, statements and terminology, phrasing and style, so the reader can make sound judgment; English title and Abstract provided by authors. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaichkina, S.I., Rozanova, O.M., Dyukina, A.R. et al. Influence of low-dose-rate red and near-infrared radiations on the level of reactive oxygen species, the genetic apparatus and the tumor growth in mice in vivo. BIOPHYSICS 58, 712–717 (2013). https://doi.org/10.1134/S0006350913050199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913050199

Keywords

Navigation