Skip to main content
Log in

Features of the metabolism of nitric oxide in normal state and inflammation

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Brief analysis of the metabolism of nitric oxide in living cells in normal state and pathology and also the analysis of the causes that hampered the progress of these studies were carried out. It was established that most of physiological fluids, including blood, normally contain nitrite and non-thiolate nitroso compounds in concentration less than 100 nM. Literature data from different researchers on the normal range of nitrite concentration in plasma of healthy people from several hundreds of nM to several μM is probably the result of low selectivity of the methods used. But nitrite and non-thiolate nitroso compounds concentration in blood is dramatically increased in case of inflammatory diseases. It is proposed that the main mechanism for the production of these substances in blood is the nitrosyl iron complexes transformation by active oxygen species but not the activation of NO production as it was considered previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Ignarro, Nitric Oxide: Biology and Pharmacology (Academic Press, San Diego, 2000).

    Google Scholar 

  2. C. Czabo, H. Ischiropoulos, and R. Radi, Nature Reviews, 6, 662 (2007).

    Google Scholar 

  3. D. L. H. Williams, Nitrosation Reactions and the Chemistry of Nitric Oxide (Elsevier, Amsterdam, 2004).

    Google Scholar 

  4. A. F. Vanin, A. A. Papina, V. A. Serezhenkov, et al., Nitric Oxide Biol. Chem. 10, 60 (2004).

    Article  Google Scholar 

  5. A. F. Vanin, A. N. Osipov, L. N. Kubrina, et al., Studia Biofizika 49, 13 (1975).

    Google Scholar 

  6. A. R. Butler, F. W. Flitney, and D. L. Williams, Trends Pharmacol. Sci. 16, 18 (1995).

    Article  Google Scholar 

  7. A. F. Vanin, I. V. Malenkova, and V. A. Serezhenkov, Nitric Oxide Biol. Chem. 1, 191 (1997).

    Article  Google Scholar 

  8. R. R. Borodulin, L. N. Kubrina, V. D. Mikoyan, etal., Nitric Oxide Biol. Chem. 29, 4 (2013).

    Article  Google Scholar 

  9. N. Y. Giliano, L. V. Konevega, L. A. Noskin, et al., Nitric Oxide Biol. Chem. 24, 151 (2011).

    Article  Google Scholar 

  10. A. L. Kleschyov, S. Strand, S. Schmitt, et al., Free Rad. Biol. Med. 40, 1340 (2006).

    Article  Google Scholar 

  11. D. Tsikas, Anal. Chem. 72, 4064 (2000).

    Article  Google Scholar 

  12. V. Titov, Current Enzyme Inhibition 7, 56–70 (2011).

    Article  Google Scholar 

  13. M. Tarpey, D. Wink, and M. Grisham, Am. J. Physiol. Regul. Integr Comp. Physiol. 286, R431 (2004).

    Article  Google Scholar 

  14. V. Titov, Yu. Petrenko, A. Vanin, and I. I. Stepuro, Biophysics (Moscow) 55, 77 (2010).

    Article  Google Scholar 

  15. A. F. Vanin and A. L. Kleschyov, in Nitric Oxide in Transplant Rejection and Anti-Tumor Defence, Eds. S. Lukiewiz, J.L. Zweier) (Kluwer Academic Publishers, Dodrecht, 1998), pp. 49–82.

  16. H. Preik-Steinhoff and M. Kelm, J. Chromatogr. B 685, 348 (1996).

    Article  Google Scholar 

  17. M. Gladwin, J. Shelhamer, A. Schechter, et al., Proc. Natl. Acad. Sci. USA 97, 11482 (2000).

    Article  ADS  Google Scholar 

  18. J. Blum, H. Dosogne, D. Hoeben, et al., Domest. Anim. Endocrinol. 19, 223 (2000).

    Article  Google Scholar 

  19. P. Rhodes, A. Leone, P. Francis, et al., Biochem.Biophys. Res. Commun. 209, 590 (1995).

    Article  Google Scholar 

  20. T. Rassaf, M. Preik., P. Kleinbongard, et al. J. Clin.Invest. 109, 1241, (2002).

    Article  Google Scholar 

  21. N. Benjamin and P. Vallance, Lancet 344, 960 (1994).

    Article  Google Scholar 

  22. D. Jang and G. Murrell, Free Radic. Biol. Med. 24, 1511 (1998).

    Article  Google Scholar 

  23. D. Jourd’heuil, K. Hallen, M. Feelisch, et al., Free Rad. Biol. Med. 28, 409 (2000).

    Article  Google Scholar 

  24. R. Goldman, A. Vlessis, and D. Trunkey, Anal. Biochem. 259, 98 (1998).

    Article  Google Scholar 

  25. V. Tyurin, S.-X. Liu, Yu. Tyurina, et al., Circ. Res. 88, 1210 (2001).

    Article  Google Scholar 

  26. V. Titov, Current Enzyme Inhibition 2, 1 (2006).

    Article  Google Scholar 

  27. V. Yu. Titov, A. V. Ivanova, V. A. Petrov, et al., Byul. Eksperim. Biol. Med. 153, 816 (2012).

    Google Scholar 

  28. V. Yu. Titov, A. V. Ivanova, M. A. Agapov, et al., Klin. Lab. Diagnostika 11, 139 (2011).

    Google Scholar 

  29. V. Yu. Titov, Current Enzyme Inhibition 4, 73 (2008).

    Article  Google Scholar 

  30. V. Titov and Yu. Petrenko, Biochemistry (Moscow) 68, 627 (2003).

    Article  Google Scholar 

  31. V. Titov, Yu. Petrenko, and A. Vanin, Biochemistry (Moscow) 73, 121 (2008).

    Article  Google Scholar 

  32. V. Yu. Titov, Yu. M. Petrenko, and A. F. Vanin, Klin. Lab. Diagnostika 9, 6 (2009).

    Google Scholar 

  33. E. Lima, M. Bonini, O. Augusto, et al., Free Radic. Biol. Med. 39, 532 (2005).

    Article  Google Scholar 

  34. I. Kurbanov, P. Mordvintsev, D. Aliyev, et al., Vopr. Med. Khim. 35, 87 (1989).

    Google Scholar 

  35. E. I. Chazov, O. V. Rodnenkov, A. V. Zorin, et al., Nitric Oxide Biol. Chem. 26, 26148 (2012).

    Article  Google Scholar 

  36. A. Deroee, M. Naraghi, A. Sontou, et al., Am. J. Rhinol. Allergy 23, 159 (2009).

    Article  Google Scholar 

  37. J. de Haro Miralles, E. Martinez-Aquilar, A. Florez, et al., Interact. Cardiovasc. Thorac. Surg. 9, 107 (2009).

    Article  Google Scholar 

  38. S. Moncada, R. Palmer, and E. Higgs, Pharm. Rev. 43, 109 (1991).

    Google Scholar 

  39. H. Ischiropoulos, L. Zhu, and J. Beckman, Arch. Biochem. Biophys. 298, 4461 (1992).

    Google Scholar 

  40. T. McCall, M. Feelisch, R. Palmer, et al., Br. J. Pharmacol. 102, 234 (1991).

    Article  Google Scholar 

  41. D. Stuehr and M. Marletta, Cancer Res. 47, 5590(1987).

    Google Scholar 

  42. R. Iyengar, D. Stuehr, and M. Marletta, Proc. Natl. Acad. Sci. USA 84, 6369 (1987).

    Article  ADS  Google Scholar 

  43. V. Yu. Titov, A. V. Ivanova, V. A. Petrov, et al., Zh. Nevrol. Psikhiatr. Korsakova 112, 4 (2012).

    Google Scholar 

  44. A. van der Vliet, J. Eiserich, B. Halliwell, et al., J. Biol. Chem. 272, 7617 (1997).

    Article  Google Scholar 

  45. W. Prutz, H. Monig, J. Butler, et al., Arch. Biochem. Biophys. 243, 125 (1985).

    Article  Google Scholar 

  46. L. McPhai and C. Clayton, J. Biol. Chem. 72, 192 (1984).

    Google Scholar 

  47. B. Babior, Blood 193, 1464 (1999).

    Google Scholar 

  48. F. Rossi, 853, 65 (1986).

  49. M. Cohen, P. Shirley, and R. DeChatelet, Clin. Chem. 29, 513 (1983).

    Google Scholar 

  50. D. I. Roshchupkin, N. S. Belakina, and M. A. Murina, Biophysics (Moscow) 51, 79 (2006).

    Article  Google Scholar 

  51. G. Ellis, I. Adatia, M. Yazdanpanah, et al., Clin. Biochem. 31, 195 (1998).

    Article  Google Scholar 

  52. D. Torre, G. Ferrario, F. Speranza, et al., J. Clin. Pathol. 49, 547 (1996).

    Google Scholar 

  53. A. Farrell, D. Blake, R. Palmer, et al., Ann. Reum. Diseas. 51, 1219 (1992).

    Article  Google Scholar 

  54. M. Paya, P. Pastor, J. Coloma, et al., Br. J. Pharmacol. 120, 1445 (1997).

    Article  Google Scholar 

  55. K. B. Shumaev, A. A. Gubkin, V. A. Serezhenkov, et al., Nitric Oxide Biol. Chem. 18, 37 (2007).

    Article  Google Scholar 

  56. K. Shumaev, A. Gubkin, V. Serezhenkov, et al., Nitric Oxide 18, 37 (2008).

    Article  Google Scholar 

  57. K. Shumaev, A. Gubkin, et al., Biophysics (Moscow) 52, 336 (2007).

    Article  Google Scholar 

  58. L. Gudkov, K. Shumaev, E. Kalenikova, et al., Biofizika 52, 503 (2007) [no English version].

    Google Scholar 

  59. K. Shumaev, A. Gubkin, S. Gubkina, et al., Biofizika 51, 472 (2006) [no English version].

    Google Scholar 

  60. K. Shumaev, N. Petrova, I. Zabbarova, et al., Biochemistry (Moscow) 69, 569 (2004).

    Article  Google Scholar 

  61. S. Yasuda, T., Yasuda, M. Liu, et al., Toxicol. Appl. Pharmacol. 251, 104 (2011).

    Article  Google Scholar 

  62. V. Yu. Titov, A. N. Osipov, S. P. Balitskii, et al., Klin. Lab. Diagnostika (in press).

  63. R. Goldenberg, J. Hauth, and W. Andrews, New England J. Medicine 342, 1500 (2000).

    Article  Google Scholar 

  64. R. Goldenberg, J. Culhane, J. Iams, et al., Lancet 371, 75 (2008).

    Article  Google Scholar 

  65. S. Lee, J. Lee, H. Seong, et al., J. Matern. Fetal Neonatal Med. 22, 305 (2009).

    Article  Google Scholar 

  66. T. Mathew and M. MacDorman, National Vital Statistics Reports 54, 16 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.Yu. Titov, A.N. Osipov, M.V. Kreinina, A.F. Vanin, 2013, published in Biofizika, 2013, Vol. 58, No. 5, pp. 857–870.

Editor’s Note: I certify that this is a closest equivalent of the original publication with all its factual statements and terminology, phrasing and style; English title and Abstract provided by authors. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titov, V.Y., Osipov, A.N., Kreinina, M.V. et al. Features of the metabolism of nitric oxide in normal state and inflammation. BIOPHYSICS 58, 676–688 (2013). https://doi.org/10.1134/S0006350913050163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913050163

Keywords

Navigation