Skip to main content
Log in

3-Dimensional microscopy as a method for volume measurement in cells undergoing apoptosis

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Different patterns of cell volume perturbations are commonly used for modes of cell death: necrosis (cell swelling) and apoptosis (cell shrinkage). In this study we employed recently developed three dimensional microscopy for the measurement of the volume of attached vascular smooth muscle cells transfected with E1A-adenoviral protein. These cells undergo rapid apoptosis in the absence of growth factors or in the presence of staurosporine. In 30–60 min of serum deprivation the volume of these cells is increased by ∼40% that corresponds to the time point of maximal activation of caspase 3 and chromatin cleavage. In 10–15 min swollen cells exhibit morphological collapse indicated by formation of apoptotic bodies. In contrast to serum-deprived cells, staurosporine leads to attenuation of cell volume by 30%. In this case, apoptotic bodies are detected in ∼2.5 h after maximal shrinkage. Thus, our results show that cell shrinkage can not be considered as universal hallmark of apoptosis. The role of stimulus-specific cell volume perturbation in the triggering of the cell death machinery should be examined further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. K. Virchow, in Cellular Pathology: As Based upon Physiological and Pathological Histology (Dover Publications, New York, 1971, pp. 356–382.

    Google Scholar 

  2. W. Flemming, Arch. Anat. Entw. Gesch. (1885).

    Google Scholar 

  3. J. F. Kerr, J. Pathol. 105(1), 13 (1971).

    Article  Google Scholar 

  4. G. Majno and I. Joris, Am. J. Pathol. 146(1), 3 (1995).

    Google Scholar 

  5. J. F. Kerr, A. H. Wyllie, and A. R. Currie, British. J. Cancer 26(4), 239 (1972).

    Article  Google Scholar 

  6. H. Ohyama, T. Yamada, and I. Watanabe, Radiation Res. 85, 333 (1981).

    Article  Google Scholar 

  7. C. D. Bortner and J. A. Cidlowski, Am. J. Physiol. 271(3) Pt 1, C950 (1996).

    Google Scholar 

  8. C. D. Bortner, F. M. Hughes, G. D. Purdy, et al., J. Biol. Chem. 272(51), 32436 (1997).

    Article  Google Scholar 

  9. L. R. Feldenberg, S. Thevananther, M. D. Rio, et al., Am. J. Physiol. Renal Physiol. 276, F837 (1999).

    Google Scholar 

  10. C. D. Bortner and J. A. Cidlowski, Biol. Chem. 274(31), 21953 (1999).

    Article  Google Scholar 

  11. S. Hortelano, M. Zeini, A. Castrillo, et al., Cell Death and Differentiation 9(6), 643 (2002).

    Article  Google Scholar 

  12. S. Wesselborg and D. Kabelitz, Cell. Immunol. 148(1), 234 (1993).

    Article  Google Scholar 

  13. E. Maeno, Y. Ishizaki, T. Kanaseki, et al., Proc. Natl. Acad. Sci. USA 97(17), 9487 (2000).

    Article  ADS  Google Scholar 

  14. K. A. Poulsen, et al., Am. J. Physiol. Cell Physiol. 298(1), C14 (2010).

    Article  Google Scholar 

  15. A. A. Vereninov, et al., Tsitologiya 46(7), 609 (2004).

    Google Scholar 

  16. F. Boudreault and R. Grygorczyk, J. Microscopy 215(3), 302 (2004).

    Article  MathSciNet  Google Scholar 

  17. S. N. Orlov, N. Thorin-trescases, S. V. Kotelevtsev, et al., J. Biol. Chem. 274(23), 16545 (1999).

    Article  Google Scholar 

  18. S. N. Orlov, T. V. Dam, J. Tremblay, and P. Hamet, Biochem. Biophys. Res. Commun. 221(3), 708 (1996).

    Article  Google Scholar 

  19. S. N. Orlov, et al., Cell Death and Differentiation 6(7), 661 (1999).

    Article  Google Scholar 

  20. Y. Okada, E. Maeno, T. Shimizu, et al., J. Physiol. 532(1), 3 (2001).

    Article  Google Scholar 

  21. C. D. Bortner and J. A. Cidlowski, Arch. Biochem. Biophys. 462(2), 176 (2007).

    Article  Google Scholar 

  22. F. Lang, et al., J. Mol. Rec. 17(5), 473 (2004).

    Article  Google Scholar 

  23. H. S. Tastesen, et al., Cell. Physiol. Biochem. 26, 809 (2010).

    Article  Google Scholar 

  24. S. R. J. Taylor, et al., J. Immunol. 180. 300 (2008).

    Google Scholar 

  25. V. Yurinskaya, et al., Cell. Physiol. Biochem. 16(4–6), 155 (2005).

    Article  Google Scholar 

  26. N. Groulx, F. Boudreault, S. N. Orlov, and R. Grygorczyk, J. Memb. Biol. 214(1), 43 (2006).

    Article  Google Scholar 

  27. O. A. Akimova, M. Poirier, S. V. Kotelevtsev, et al., Apoptosis 13(5), 670 (2008).

    Article  Google Scholar 

  28. R. Nunez, S. M. Sancho-Martinez, J. M. L. Novoa, and F. J. Lopez-Hernandez, Cell Death and Differentiation 17, 1665 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.A. Platonova, S.V. Koltsova, G.V. Maksimov, R. Grygorszyk, S.N. Orlov, 2013, published in Biofizika, 2013, Vol. 58, No. 3, pp. 501–506.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Platonova, A.A., Koltsova, S.V., Maksimov, G.V. et al. 3-Dimensional microscopy as a method for volume measurement in cells undergoing apoptosis. BIOPHYSICS 58, 389–393 (2013). https://doi.org/10.1134/S0006350913030135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913030135

Keywords

Navigation