Skip to main content
Log in

A mechanistic model for interference and Allee effect in the predator population

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We present the results of simulations in an individual-based model describing spatial movement and predator-prey interaction within a closed rectangular habitat. Movement of each individual animal is determined by local conditions only, so any collective behavior emerges owing to self-organization. It is shown that the pursuit of prey by predators entails predator interference, manifesting itself at the population level as the dependency of the trophic function (individual ration) on predator abundance. The stabilizing effect of predator interference on the dynamics of a predator-prey system is discussed. Inclusion of prey evasion induces apparent cooperation of predators and further alters the functional response, giving rise to a strong Allee effect, with extinction of the predator population upon dropping below critical numbers. Thus, we propose a simple mechanistic interpretation of important but still poorly understood behavioral phenomena that underlie the functioning of natural trophic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Lotka, Elements of Physical Biology (Williams and Wilkins, Baltimore, 1925).

    MATH  Google Scholar 

  2. V. Volterra, Nature 188, 558 (1926).

    Article  ADS  Google Scholar 

  3. G. F. Gause, The Struggle for Existence (Williams and Wilkins, Baltimore, 1934).

    Book  Google Scholar 

  4. V. A. Kostitzin, Biologie Mathematique (Librairie Armand Colin, Paris, 1937).

    Google Scholar 

  5. Yu. M. Svirezhev and D. O. Logofet, Stability of Biological Communities (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  6. R. Arditi and L. R. Ginzburg, How Species Interact: Altering the Standard View on Trophic Ecology (Oxford Univ. Press, Oxford, 2012).

    Google Scholar 

  7. P. A. Abrams and L. R. Ginzburg, Trends Ecol. Evol. 15, 337 (2000).

    Article  Google Scholar 

  8. R. Arditi, J.-M. Callois, Yu. Tyutyunov, and C. Jost, Compt. Rend. Biol. 327, 1037 (2004).

    Article  Google Scholar 

  9. Yu. M. Svirezhev, Ecol. Model. 216, 89 (2008).

    Article  Google Scholar 

  10. C. S. Holling, Can. Entomol. 91(5), 293 (1959).

    Article  Google Scholar 

  11. M. L. Rosenzweig and R. H. MacArthur, Am. Naturalist 97, 217 (1963).

    Google Scholar 

  12. M. L. Rosenzweig, Science 171, 385 (1971).

    Article  ADS  Google Scholar 

  13. R. F. Luck, Trends Ecol. Evol. 5, 196 (1990).

    Article  Google Scholar 

  14. A. A. Berryman, in Theoretical Approaches to Biological Control, Ed. by B. A. Hawkins and H. V. Cornell (Cambridge Univ. Press, Cambridge, 1999), pp. 3–21.

  15. R. Arditi and A. A. Berryman, Trends Ecol. Evol. 6, 32 (1991).

    Article  Google Scholar 

  16. R. Arditi and L. R. Ginzburg, J. Theor. Biol. 139, 311 (1989).

    Article  Google Scholar 

  17. C. X. J. Jensen and L. R. Ginzburg, Ecol. Model. 188, 3 (2005).

    Article  Google Scholar 

  18. N. Sapoukhina, Yu. Tyutyunov, and R. Arditi, Am. Naturalist 162, 61 (2003).

    Article  Google Scholar 

  19. H. R. Akçakaya, R. Arditi, and L. R. Ginzburg,, Ecology 76, 995 (1995).

    Article  Google Scholar 

  20. M. Begon, J. L. Harper, and C. R. Townsend, Ecology: Individuals, Populations and Communities (Sinauer Associates, 1986).

    Google Scholar 

  21. D. L. DeAngelis, R. A. Goldstein, and R. V. O’Neill, Ecology 56, 881 (1975).

    Article  Google Scholar 

  22. S. V. Berdnikov, V. V. Selyutin, V. V. Vasilchenko, and V. V. Caddy, Fisheries Res. 42, 261 (1999).

    Article  Google Scholar 

  23. C. Cosner, D. L. DeAngelis, J. S. Ault, and D. B. Olson, Theor. Popul. Biol. 56, 65 (1999).

    Article  MATH  Google Scholar 

  24. T. Park, Physiol. Zool. 27, 177 (1954).

    Google Scholar 

  25. V. S. Ivlev, Uspekhi Sovr. Biol. 24, 417 (1947).

    Google Scholar 

  26. V. S. Ivlev, Experimental Ecology of Fish Nutrition (Pishchepromizdat, Moscow, 1955) [in Russian].

    Google Scholar 

  27. M. P. Hassell and G. C. Varley, Nature 223, 1133 (1969).

    Article  ADS  Google Scholar 

  28. J. R. Beddington, J. Anim. Ecology 44, 331 (1975).

    Article  Google Scholar 

  29. Yu. Tyutyunov, L. Titova, and R. Arditi, Ecol. Complexity 5(1), 48 (2008).

    Article  Google Scholar 

  30. Yu. Tyutyunov, L. Titova, F. A. Surkov, and E. N. Bakaeva, Zh. Obshch. BIol. 71, 52 (2010).

    Google Scholar 

  31. D. S. Contois, J. Gen. Microbiol. 21, 40 (1959).

    Article  Google Scholar 

  32. L. R. Ginzburg, Yu. I. Gol’dman, and A. I. Railkin, Zh. Obshch. BIol. 32, 724 (1971).

    Google Scholar 

  33. C. Jost, G. Devulder, J. A., Vucetich, et al., J. Anim. Ecol. 74, 809 (2005).

    Article  Google Scholar 

  34. J. A. Vucetich, R. O. Peterson, and C. L. Schaefer, Ecology 83, 3003 (2002).

    Article  Google Scholar 

  35. J. P. DeLong and D. A. Vasseur, BMC Ecology 11, 1 (2011).

    Article  Google Scholar 

  36. J.-Ch. Poggiale, J. Michalski, and R. Arditi, Bull. Math. Biol. 60, 1149 (1998).

    Article  MATH  Google Scholar 

  37. R. Arditi, Yu. Tyutyunov, A. Morgulis, et al., Theor. Popul. Biol. 59, 207 (2001).

    Article  MATH  Google Scholar 

  38. T. Tully, P. Cassey, and R. Ferriere, OIKOS 111, 479 (2005).

    Article  Google Scholar 

  39. A. D. Bazykin, F. S. Berezovskaya, G. A. Denisov, and Yu. A. Kuznetzov, Ecol. Model. 14, 39 (1984).

    Article  Google Scholar 

  40. W. C. Allee, Animal Aggregations: A Study in General Sociology (Chicago Univ. Press, Chicago, 1931).

    Book  Google Scholar 

  41. P. A. Stephens and W. J. Sutherland, Trends Ecol. Evol. 14, 401 (1999).

    Article  Google Scholar 

  42. P. H. Leslie, Biometrika 35, 213 (1948).

    MathSciNet  MATH  Google Scholar 

  43. P. H. Leslie and J. C. Gower, Biometrika 47, 219 (1960).

    MathSciNet  MATH  Google Scholar 

  44. C. Jost, Comparing predator-prey models qualitatively and quantitatively with ecological time-series data: PhD Thesis (Institute National Agronomique, Paris-Grignon, 1998).

    Google Scholar 

  45. J. H. Steele and E. W. Henderson, Am. Naturalist 117, 676 (1981).

    Article  Google Scholar 

  46. A. D. Bazykin, Mathematical Biophysics of Interacting Populations (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  47. S. V. Petrovskii and H. Malchow, Theor. Popul. Biol. 59, 157 (2001).

    Article  MATH  Google Scholar 

  48. A. B. Medvinsky, S. V. Petrovskii, D. A. Tikhonov, et al., J. Biosci. 26, 77 (2001).

    Article  Google Scholar 

  49. L. R. Ginzburg and M. Colyvan, Ecological Orbits: How Planets Move and Populations Grow (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  50. L. R. Ginzburg and C. X. J. Jensen, Trends Ecol. Evol. 19, 121 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tyutyunov.

Additional information

Original Russian Text © Yu.V. Tyutyunov, L.I. Titova, S.V. Berdnikov, 2013, published in Biofizika, 2013, Vol. 58, No. 2, pp. 349–356.

The text and presentation have been additionally amended for the English version. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyutyunov, Y.V., Titova, L.I. & Berdnikov, S.V. A mechanistic model for interference and Allee effect in the predator population. BIOPHYSICS 58, 258–264 (2013). https://doi.org/10.1134/S000635091302022X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091302022X

Keywords

Navigation