Skip to main content
Log in

Formation of a new type of dinitrosyl iron complexes bound to cysteine modified with methylglyoxal

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

It has been shown that interaction of cysteine dinitrosyl iron complexes with methylglyoxal leads to the formation of a new type of dinitrosyl iron complexes, EPR spectrum of these complexes essentially differs from spectra of dinitrosyl iron complexes containing unmodified thiol. The products of the cysteine reaction with methylglyoxal are hemithioacetals, Schiff bases and thiazolidines, which most likely serve as ligands for the new type of dinitrosyl iron complexes. It has been shown that the new type of dinitrosyl iron complexes as cysteine dinitrosyl iron complexes, which are physiological donors of nitric oxide, exert a vasodilator effect. It has also been found that the oxidative destruction of the new type of dinitrosyl iron complexes occurs at normal oxygen partial pressure, but these dinitrosyl iron complexes remain rather stable under hypoxia modeling. An assumption that the destruction of the new type of dinitrosyl iron complexes is caused by the formation of a bound peroxynitrite-containing intermediate is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Goldin, J. A. Beckman, A. M. Schmidt, and M. A. Creager, Circulation 114(6), 597 (2006).

    Article  Google Scholar 

  2. A. Dhar, I. Dhar, K. M. Desai, and L. Wu, British J. Pharmacol. 161(8), 1843 (2010).

    Article  Google Scholar 

  3. S. Vasdev and J. Stuckless, Int. J. Angiol. 19(2), e58 (2010).

    Article  Google Scholar 

  4. R. Bucala, K. J. Tracey, and A. Cerami, J. Clin. Invest. 87(2), 432 (1991).

    Article  Google Scholar 

  5. M. Hogan, A. Cerami, and R. J. Bucala, J. Clin. Invest. 90(3), 1110 (1992).

    Article  Google Scholar 

  6. C. Napoli, L. O. Lerman, F. de Nigris, et al., J. Am. Coll. Cardiol. 40(8), 1515 (2002).

    Article  Google Scholar 

  7. T. W. C. Lo, M. E. Westwood, A. C. McLellan, et al., J. Biol. Chem. 269(51), 32299 (1994).

    Google Scholar 

  8. O. Brouwers, T. Teerlink, J. van Bezu, et al., Ann. N. Y. Acad. Sci. 1126, 231 (2008).

    Article  ADS  Google Scholar 

  9. L. Wu and B. H. J. Juurlink, Hypertension 39(3), 809 (2002).

    Article  Google Scholar 

  10. L. Wu, Can. J. Physiol. Pharmacol. 83(1), 63 (2005).

    Article  Google Scholar 

  11. O. Brouwers, P. M. Niessen, G. Haenen, et al., Diabetologia 53(5), 989 (2010).

    Article  Google Scholar 

  12. T. Chang, R. Wang, and L. Wu, Free Rad. Biol. Med. 38(2), 286 (2005).

    Article  Google Scholar 

  13. M. G. Rosca, T. G. Mustada, M. T. Kinter, et al., Am. J. Physiol. Renal. Physiol. 289(2), 420 (2005).

    Article  Google Scholar 

  14. Z. Guo, Z. Xia, J. Jiang, and J. H. McNeill, Am. J. Physiol. Heart Circ. Physiol. 92(4), H1728 (2007).

    Google Scholar 

  15. H.-S. Yim, S-O. Kang, Y-Ch. Hah, et al., J. Biol. Chem. 270(47), 28228 (1995).

    Article  Google Scholar 

  16. K. B. Shumaev, S. A. Gubkina, E. M. Kumskova, et al., Biokhimiya 74(4), 568 (2009).

    Google Scholar 

  17. A. F. Vanin, V. P. Mokh, V. A. Serezhenkov, and E. I. Chazov, Nitric Oxide Biol. Chem. 16(2), 322 (2007).

    Article  Google Scholar 

  18. A. F. Vanin, Nitric Oxide Biol. Chem. 21(1), 1 (2008).

    Article  Google Scholar 

  19. K. B. Shumaev, A. A. Gubkin, S. A. Gubkina, et al., Biofizika 51(3), 472 (2006).

    Google Scholar 

  20. K. B. Shumaev, A. F. Vanin, V. L. Lakomkin, et al., Kardiol. Vestn. 2(2), 10 (2007).

    Google Scholar 

  21. K. L. Gudkov, K. B. Shumaev, E. I. Kalennikova, et al., Biofizika 52(3), 503 (2007).

    Google Scholar 

  22. K. B. Shumaev, A. A. Gubkin, V. A. Serezhenkov, et al., Nitric Oxide Biol. Chem. 18(1), 37 (2008).

    Article  Google Scholar 

  23. J. M. Acimovic, B. D. Stanimirovic, N. Todorovic, et al., Chem. Biol. Interact. 188(1), 21 (2010).

    Article  Google Scholar 

  24. P. B. L. Pun and M. P. Murphy, Int. J. Cell Biol. 843505, Epub. 2012 June 21 (2012).

    Google Scholar 

  25. L. Pripis-Nicolau, G. de Revel, A. Bertrand, and A. J. Maujean, Agric. Food Chem. 48(9) (2000).

    Google Scholar 

  26. D. Sh. Burbaev, A. F. Vanin, and L. A. Blumenfeld, Zh. Strukt. Khimii 2(1), 252 (1971).

    Google Scholar 

  27. A. F. Vanin and D. Sh. Burbaev, J. Biophys. 878236, Epub. 2011 Feb. 14 (2011).

    Google Scholar 

  28. J. Yang, X. Duan, A. P. Landry, and H. Ding, Free Radic. Biol. Med. 49(2), 268 (2010).

    Article  Google Scholar 

  29. N. G. Tran, H. Kalyvas, K. M. Skodjet, et al., J. Am. Chem. Soc. 133(5), 1184 (2011).

    Article  Google Scholar 

  30. H, Ohshima, I. K. O’Neill, M. Friesen, et al., IARC Sci. Publ. 57, 77 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Shumaev.

Additional information

Original Russian Text © K.B. Shumaev, S.A. Gubkina, A.F. Vanin, D.Sh. Burbaev, V.P. Mokh, A.F. Topunov, E.K. Ruuge, 2013, published in Biofizika, 2013, Vol. 58, No. 2, pp. 239–245.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shumaev, K.B., Gubkina, S.A., Vanin, A.F. et al. Formation of a new type of dinitrosyl iron complexes bound to cysteine modified with methylglyoxal. BIOPHYSICS 58, 172–177 (2013). https://doi.org/10.1134/S000635091302019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091302019X

Keywords

Navigation