Skip to main content
Log in

Study of the relationship between shape and aggregation change in human erythrocytes

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The relationship between shape and spontaneous and fibrinogen-induced aggregation change in human erythrocytes was studied. Spontaneous and fibrinogen-induced erythrocyte aggregation was investigated using a rheoscope designed according to the method of H. Schmid-Schonbein et al. (1973). The erythrocyte shape was studied by means of light microscopy. It was shown that plasma enriched with lysophosphatidic acid and ATP depletion of erythrocytes led to the change of erythrocyte shape: discocytes transformed into echinocytes. It was found that spontaneous aggregation of such cells was considerably decreased. Aggregation of erythrocytes, treated with lysophosphatidic acid, was diminished more markedly. Fibrinogen-induced aggregation of echinocytes, obtained after treatment with lysophosphatidic acid and produced by ATP depletion, was also greatly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. W. Rampling, H. J. Meiselman, B. Neu, and O. K. Baskurt, Biorheology 41(2), 91 (2004).

    Google Scholar 

  2. G. Barshtein, R. Ben-Ami, and S. Yedgar, Expert Rev. Cardiovasc. Ther. 5(4), 743 (2007).

    Article  Google Scholar 

  3. I. A. Tikhomirova and A. V. Murav’ev, Ros. Fiziol. Zh. I.M. Sechenova 93(12), 1382 (2007).

    Google Scholar 

  4. Yu. A. Sheremet’ev, A. V. Sheremet’eva, and A. V. Lednev, Biophysics 50(5), 784 (2005).

    Google Scholar 

  5. O. K. Baskurt and H. J. Meiselman, Semin. Thromb. Hemost. 29(5), 435 (2003).

    Article  Google Scholar 

  6. R. B. Ami, G. Barshtein, D. Zeltser, et al., Am. J. Physiol. Heart Circ. Physiol. 280(5), 1982 (2001).

    Google Scholar 

  7. R. Ben-Ami, G. Sheinman, S. Yedgar, et al., Thromb. Res. 105(6), 487 (2002).

    Article  Google Scholar 

  8. E. Ernst and K. L. Resch, Ann. Intern. Med. 118(12), 956 (1993).

    Article  Google Scholar 

  9. M. N. Egorihina, Tromboz Gemostaz Reologiya 39(3), 67 (2009).

    Google Scholar 

  10. G. Y. Levin and M. N. Egorihina, Burns 36(6), 806 (2010).

    Article  Google Scholar 

  11. W. H. Reinhart, A. Singh, and P. W. Straub, Br. J. Haematol. 73(4), 551 (1989).

    Article  Google Scholar 

  12. W. H. Reinhart, G. M. Baerlocher, T. Cerny, et al., Eur. J. Haematol. 62(4), 223 (1999).

    Article  Google Scholar 

  13. R. I. Weed, P. L. La Celle, and E. W. Merrill, J. Clin. Invest. 48(5), 795 (1969).

    Article  Google Scholar 

  14. S. M. Chung, O. N. Bae, K. M. Lim, et al., Arterioscler. Thromb. Vasc. Biol. 27(2), 414 (2007).

    Article  Google Scholar 

  15. Yu. A. Sheremet’ev, A.N. Popovicheva, and G. Ya. Levin, Proc. VIII Internat. Sci. Conf. “Systemic Circulation, Microcirculation and Hemorheology (from Angiogenesis to Central Circulation)” (Yaroslavl, 2011).

    Google Scholar 

  16. S. C. Liu and J. Palek, Blood 54(5), 1117 (1979).

    Google Scholar 

  17. J. Aoki, A. Taira, Y. Takanezawa, et al., J. Biol. Chem. 277(50), 48737 (2002).

    Article  Google Scholar 

  18. G. Ya. Levin, A. P. Modin, S. Yu. Kudritskii, and L. N. Sosnina, RF Patent 2278381, publ. 20.06.06, Bull. No. 17.

  19. H. Schmid-Schonbein, J. von Gosen, L. Heinich, et al., Microvasc. Res. 6(3), 366 (1973).

    Article  Google Scholar 

  20. X. Fang, D. Gaudette, T. Furui, et al., Ann. NY Acad. Sci. 905, 188 (2000).

    Article  ADS  Google Scholar 

  21. X. Chen, X. Y. Yang, N. D. Wang, et al., Scand. J. Clin. Lab. Invest. 63(7–8), 497 (2003).

    Article  Google Scholar 

  22. N. Watanabe, H. Ikeda, K. Nakamura, et al., J. Clin. Gastroenterol. 41(6), 616 (2007).

    Article  Google Scholar 

  23. W. H. Reinhart and T. Schulzki, Clin. Hemorheol. Microcirc. 49(1–4), 451 (2011).

    Google Scholar 

  24. L. Kaestner, P. Steffen, D. B. Nguyen, et al., Bioelectrochemistry 87, 89 (2012).

    Article  Google Scholar 

  25. N. Maeda, M. Seike, S. Kume, et al., Biochim. Biophys. Acta 904(1), 81 (1987).

    Article  Google Scholar 

  26. T. Kirschkamp, H. Schmid-Schonbein, A. Weinberger, and R. Smeets, Ther. Apher. Dial. 12(5), 360 (2008).

    Article  Google Scholar 

  27. F. A. Carvalho, S. de Oliveira, T. Freitas, et al., PLOS ONE 6(3), 1 (2011).

    Google Scholar 

  28. D. Lominadze and W. L. Dean, FEBS Lett. 517(1–3), 41 (2002).

    Article  Google Scholar 

  29. F. A. Carvalho, S. Connell, G. Miltenberger-Miltenyi, et al., ACS NANO 4(8), 4609 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Sheremet’ev.

Additional information

Original Russian Text © Yu.A. Sheremet’ev, A.N. Popovicheva, M.N. Egorihina, G.Ya. Levin, 2013, published in Biofizika, 2013, Vol. 58, No. 2, pp. 264–268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheremet’ev, Y.A., Popovicheva, A.N., Egorihina, M.N. et al. Study of the relationship between shape and aggregation change in human erythrocytes. BIOPHYSICS 58, 193–196 (2013). https://doi.org/10.1134/S0006350913020176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913020176

Keywords

Navigation