Skip to main content
Log in

A method for solution of the multi-objective inverse problems under uncertainty

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We describe a method to solve multi-objective inverse problems under uncertainty. The method was tested on non-linear models of dynamic series and population dynamics, as well as on the spatiotemporal model of gene expression in terms of non-linear differential equations. We consider how to identify model parameters when experimental data contain additive noise and measurements are performed in discrete time points. We formulate the multi-objective problem of optimization under uncertainty. In addition to a criterion of least squares difference we applied a criterion which is based on the integral of trajectories of the system spatiotemporal dynamics, as well as a heuristic criterion CHAOS based on the decision tree method. The optimization problem is formulated using a fuzzy statement and is constrained by penalty functions based on the normalized membership functions of a fuzzy set of model solutions. This allows us to reconstruct the expression pattern of hairy gene in Drosophila even-skipped mutants that is in good agreement with experimental data. The reproducibility of obtained results is confirmed by solution of inverse problems using different global optimization methods with heuristic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Moiseev, Mathematical Problems of Systems Analysis (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  2. V. S. Kornilov, Teaching Inverse Problems for Differential Equations as a Factor of Humanitarization of Mathematical Education (MGPU, Moscow, 2006) [in Russian].

    Google Scholar 

  3. H. T. Banks, K. Holm, and F. Kappel, Comparison of optimal design methods in inverse problems. 2011 Inverse Problems 27 075002 doi:10.1088/02665611/27/7/075002

    Google Scholar 

  4. V. I. Mironov and Yu. V. Mironov, Tr. SPIIRAN, No. 9, 148 (2009).

    Google Scholar 

  5. A. P. Voshchinin and G. R. Sotirov, Optimization under Uncertainty (MEI, Moscow, 1989) [in Russian].

    Google Scholar 

  6. R. Bellman and L. Zade, in Questions of Analysis and Procedures of Decision Making (Mir, Moscow, 1976) [in Russian].

    Google Scholar 

  7. A. A. Samarskii and P. M. Vabishchevich, Numerical Methods of Solving Inverse Problems of Mathematical Physics (Izd. LKI, Moscow, 2009) [in Russian].

    Google Scholar 

  8. S. A. Orlovskii, Problems of Decision Making with Fuzzy Information (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  9. A. M. Zagrebaev, N. A. Kritsina, Yu. P. Kulyabichev, and Yu. Yu. Shumilov, Methods of Mathematical Programming in Problems of Optimization of Complex Technical Systems (MIFI, Moscow, 2007) [in Russian].

    Google Scholar 

  10. Yu. M. Ermol’ev, Methods of Stochastic Programming (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  11. A. B. Rubin, Biophysics (KD “Universitet”, Moscow, 2000) [in Russian].

    Google Scholar 

  12. A. S. Pisarev, Heuristic Optimization Method for Inverse Problem Solving (St. Petersburg-Tsarskoe Selo, 2012).

    Google Scholar 

  13. A. M. Denisov, Introduction to Theory of Inverse Problems (MGU, Moscow, 1994) [in Russian].

    Google Scholar 

  14. V. Yu. Trebizh, Introduction to Statistical Theory of Inverse Problems (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  15. N. V. Diligenskii, L. G. Dymova, and P. V. Sevast’yanov, Fuzzy Modeling and Multiobjective Optimization of Production Systems under Uncertainty: Technology, Economics, Ecology (Mashinostroenie, Moscow, 2004) [in Russian].

    Google Scholar 

  16. J. Jaeger, S. Surkova, M. Blagov, et al., Nature 430, 368 (2004).

    Article  ADS  Google Scholar 

  17. J. Jaeger, M. Blagov, D. Kosman, et al., Genetics 167, 1721 (2004).

    Article  Google Scholar 

  18. J. Jaeger, D. H. Sharp, and J. Reinitz, Mech. Dev. 124(2), 108 (2007).

    Article  Google Scholar 

  19. X. He, et al., PLoS Comp. Biology 6, e1000935 (2010).

    Article  Google Scholar 

  20. P. S. Krasnoshchekov, V. V. Morozov, and N. M. Popov, Optimization in Automated Design (MAKS Press, Moscow, 2008 [in Russian].

    Google Scholar 

  21. T. A. Silaeva, Methods of Solving Problems of Optimal Design of Computing Systems: Educatory Manual to Laboratory Works (Izd. MAI, Moscow, 2000) [in Russian].

    Google Scholar 

  22. P. D. Krut’ko, Inverse Problems of Dynamics in the Theory of Automated Control (Mashinostroenie, Moscow, 2004) [in Russian].

    Google Scholar 

  23. I. G. Chernorutskii, Methods of Optimization in Control Theory (Piter, StPb., 2004) [in Russian].

    Google Scholar 

  24. Control under Uncertainty, Ed. by A. E. Gorodetskii (Izd. SPbGTU, StPb., 2002) [in Russian].

    Google Scholar 

  25. R. Izerman, Identification of Dynamic Systems (Springer, 2011).

    Book  Google Scholar 

  26. S. Surkova, E. Myasnikova, K. Kozlov, et al., in Imaging in Developmental Biology: A Laboratory Manual, Ed. by J. Sharpe, RO. Wong (Cold Spring Harbor Laboratory Press, NY, 2011), pp.683–697.

  27. T. F. Edgar, D. M. Himmelblau, and L. S. Lasdon, Optimization of Chemical Processes, 2nd edn. (McGraw-Hill, New York, 2001).

    Google Scholar 

  28. A. S. Pisarev, in Reports of XV Internat. Conf. on Soft Computing and Measurement (SCM’2012) (St.Petersburg, 2012), Vol. 1, pp. 139–142.

    Google Scholar 

  29. A. S. Pisarev, Math. Conf. “Information Technologies in Control” (ITU-2012) (2012) [in Russian].

    Google Scholar 

  30. T. J. Ross, Fuzzy Logic with Engineering Applications, 2nd edn. (Wiley, N.Y., 2004).

    MATH  Google Scholar 

  31. M. Aoki, Optimization of Stochastic Systems (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  32. J. Murrey, Mathematical Biology (NITs “Regulyarnaya i Khaoticheskaya Dinamika”, 2009) [in Russian].

    Google Scholar 

  33. G. Yu. Riznichenko, Mathematical Models in Biophysics and Ecology (Inst. Comput. Res., Moscow-Izhevsk, 2003) [in Russian].

    Google Scholar 

  34. Yu. M. Romanovskii, N. V. Stepanova, and D. S. Chernavsky, Mathematical Modeling in Biophysics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  35. V. I. Arnold, “Hard” and “Soft” Mathematical Models, 2nd edn. (MTsNMO, Moscow, 2004) [in Russian].

    Google Scholar 

  36. H. K. Leung, Chinese J. Phisics. 29, 6 (1991).

    ADS  Google Scholar 

  37. P. A. Lawrence, The Making of A Fly (Blackwell Scientific Publications, Oxford, 1992).

    Google Scholar 

  38. P. Ingham and P. Gergen, Development 104(Suppl), 51 (1988).

    Google Scholar 

  39. A. Pisarev, E. Poustelnikova, M. Samsonova, and J. Reinitz, Nucl. Acids Res. 37, D560 (2009).

    Article  Google Scholar 

  40. E. Mjolsness, D. H. Sharp, and J. Reinitz, J. Theor. Biol. 152, 429 (1991).

    Article  Google Scholar 

  41. J. Reinitz, and D. H. Sharp, Mechanisms of Development 49, 133 (1995).

    Article  Google Scholar 

  42. V. V. Podinovskii, Introduction to Theory of Importance of Criteria in Multiobjective Problems of Decision Making (FIZMATLIT, Moscow, 2007) [in Russian].

    Google Scholar 

  43. S. V. Mikoni and I. S. Kiselev, Program. Produkty Sistemy, No. 4, 9 (2009).

    Google Scholar 

  44. R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Radio i Svyaz’, Moscow, 1981) [in Russian].

    MATH  Google Scholar 

  45. R. Stoyer, Multiobjective Optimization. Theory, Calculations and Applications (Radio i Svyaz’, Moscow, 1992) [in Russian].

    Google Scholar 

  46. A. E. Kalashnikov, Dialogue System of Multiobjective Optimization of Technological Processes (MISI, Moscow, 2004) [in Russian].

    Google Scholar 

  47. T. Weise, Global Optimization Algorithms. Theory and Application (Univ. Sci. Tech. China, 2009).

    Google Scholar 

  48. D. Grop, Methods of System Identification (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  49. L. Ljung, System Identification. Theory for User (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  50. E. Sage and G. Mels, Identification of Control Systems (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  51. Modern Methods of System Identification, Ed. by P. Eykhoff (Mir, Moscow, 1983) [in Russian].

    Google Scholar 

  52. A. N. Tikhonov and V. Ya. Arsenin, Methods of Solving Incorrect Problems (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  53. J. R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann Publishers, 1993).

    Google Scholar 

  54. A. A. Barsegyan, M. S. Kupriyanov, V. V. Stepanenko, and I. I. Kholod, Technologies of Data Analysis. Data Mining, Visual Mining, Text Mining, OLAP, 2nd edn. (BKhV, 2007) [in Russian].

    Google Scholar 

  55. Comparison tables: BBOB 2010 function testbed. Workshop for Black-Box Optimization Benchmarking, GECCO 2010 (Portland, Oregon, 2010).

  56. A. Pisarev, E. Pustelnikova, M. Samsonova, and P. Bauman, Systems 28(4), 269 (2003).

    MATH  Google Scholar 

  57. S. Carrol and S. Vavara, Development 107, 673 (1989).

    Google Scholar 

  58. M. Sobolewski, CLOSER 2011 — Intern. Conf. on Cloud Computing and Services Science (Springer-Verlag, The Netherlands, 2011).

    Google Scholar 

  59. O. V. Gusev, V. V. Polyakov, and G. A. Savinov, Sistemy Upravl. Inform. Tekhnol., No. 2 (44), 12 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Pisarev.

Additional information

Original Russian Text © A.S. Pisarev, M.G. Samsonova, 2013, published in Biofizika, 2013, Vol. 58, No. 2, pp. 221–232.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisarev, A.S., Samsonova, M.G. A method for solution of the multi-objective inverse problems under uncertainty. BIOPHYSICS 58, 157–166 (2013). https://doi.org/10.1134/S0006350913020139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913020139

Keywords

Navigation