Skip to main content
Log in

Linear clusters of gold nanoparticles in quasinematic layers of DNA liquid-crystalline dispersion particles

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of small size (∼2 nm) gold nanoparticles on the properties of particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules were analyzed. It has been shown that gold nanoparticles induce two different processes. First, they facilitate reorganization of the spatial cholesteric structure of dispersion particles to nematic one. This process is accompanied by the fast decrease in the amplitude of abnormal band in the CD spectrum. Second, they can form ensembles consisting of gold nanoparticles. This process is accompanied by the development and displacement of surface plasmon resonance band in the visible region of the absorption spectrum. The appearance of this band is analyzed by considering two different models of the formation of ensembles consisting of gold nanoparticles. By small-angle X-ray scattering we performed structural analysis of phases formed by DNA cholesteric liquid-crystalline dispersion particles treated with gold nanoparticles. As a result of this study it was possible to prove the formation of linear clusters of gold nanoparticles in the “free space” between the adjacent DNA molecules fixed in the quasinematic layers of liquid-crystalline particles. It has been hypothesized that the formation of linear clusters of gold nanoparticles is most likely related to DNA molecules, ordered in the spatial structure of quasinematic layers, and the toxicity of these nanoparticles in biological systems hypothesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Dykman, V. A. Bogatyrev, S. Yu. Shchegolev, and N. G. Khlebtsov, Gold Nanoparticles: Synthesis, Properties, Biomedical Application (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  2. B. Kang, M. A. Mackey, and M. A. El-Sayed, J. Am. Chem. Soc. 132(5), 1517 (2010).

    Article  Google Scholar 

  3. M. Tsoli, H. Kuhn, W. Brandau, et al., Small 1(8–9), 841 (2005).

    Article  Google Scholar 

  4. Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, and S. G. Skuridin, Liquid-Crystal Dispersions and Nanoconstructs of DNA (Radiotekhnika, Moscow, 2008) [in Russian].

    Google Scholar 

  5. F. Livolant and A. Leforestier, Prog. Polym. Sci. 21(6), 1115 (1996).

    Article  Google Scholar 

  6. A. Leforestier and F. Livolant, Proc. Natl. Acad. Sci. USA 106(23), 9157 (2009).

    Article  ADS  Google Scholar 

  7. A. Leforestier and F. Livolant, J. Mol. Biol. 396(2), 384 (2010).

    Article  Google Scholar 

  8. D. G. Duff, A. Baiker, and P. P. Edwards, Langmuir 9(9), 2301 (1993).

    Article  Google Scholar 

  9. L. Yu. Mogilevskii, A. T. Dembo, D. I. Svergun, and L. A. Feigin, Kristallografiya 29(3), 587 (1984).

    Google Scholar 

  10. L. A. Feigin and D. I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering (Plenum Press, New York, 1987).

    Google Scholar 

  11. P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Cryst. 36(5), 1277 (2003).

    Article  Google Scholar 

  12. D. I. Svergun, J. Appl. Cryst. 25(Part 4), 495 (1992).

    Article  Google Scholar 

  13. P. V. Konarev, M. V. Petoukhov, and D. I. Svergun, J. Appl. Cryst. 34(4), 527 (2001).

    Article  Google Scholar 

  14. D. I. Svergun, C. Barberato, and M. H. J. Koch, J. Appl. Cryst. 28(Part 6), 768 (1995).

    Article  Google Scholar 

  15. S. G. Skuridin, V. A. Dubinskaya, V. M. Rudoi, et al., Dokl. RAN 432(6), 838 (2010).

    Google Scholar 

  16. L. V. Zherenkova, P. V. Komarov, and P. G. Khalatur, Kolloid. Zh. 69(5), 753 (2007).

    Google Scholar 

  17. T. M. Herne and M. J. Tarlov, J. Am. Chem. Soc. 119(38), 8916 (1997).

    Article  Google Scholar 

  18. D. Y. Petrovykh, H. Kimura-Suda, L. J. Whitman, and M. J. Tarlov, J. Am. Chem. Soc. 125(17), 5219 (2003).

    Article  Google Scholar 

  19. W. J. Parak, T. Pellegrino, C. M. Micheel, et al., Nano Lett. 3(1), 33 (2003).

    Article  ADS  Google Scholar 

  20. A. Kira, H. Kim, and K. Yasuda, Langmuir 25(3), 1285 (2009).

    Article  Google Scholar 

  21. S. Link and M. A. El-Sayed, J. Phys. Chem. B 103(40), 8410 (1999).

    Article  Google Scholar 

  22. K. H. Su, Q. H. Wei, X. Zhang, et al., Nano Lett. 3(8), 1087 (2003).

    Article  ADS  Google Scholar 

  23. W. Rechberger, A. Hohenau, A. Leitner, et al., Opt. Commun. 220(1–3), 137 (2003).

    Article  ADS  Google Scholar 

  24. P. V. Kamat, J. Phys. Chem. B 106(32), 7729 (2002).

    Article  Google Scholar 

  25. J. J. Storhoff, A. A. Lazarides, R. C. Mucic, et al., J. Am. Chem. Soc. 122(19), 4640 (2000).

    Article  Google Scholar 

  26. C. J. Loweth, W. B. Caldwell, X. Peng, et al., Angew. Chem. Int. Ed. 38(12), 1808 (1999).

    Article  Google Scholar 

  27. A. Kumar, M. Pattarkine, M. Bhadbhade, et al., Adv. Mater. 13(5), 341 (2001).

    Article  Google Scholar 

  28. H. Nakao, H. Shiigi, Y. Yamamoto, et al., S. Tokonami, Nano Lett. 3(10), 1391 (2003).

    Article  ADS  Google Scholar 

  29. S.-J. Park, A. A. Lazarides, J. J. Storhoff, et al., J. Phys. Chem. B 108(33), 12375 (2004).

    Article  Google Scholar 

  30. K. C. Grabar, P. C. Smith, M. D. Musick, et al., J. Am. Chem. Soc. 118(5), 1148 (1996).

    Article  Google Scholar 

  31. N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, Kolloid. Zh. 62(6), 844 (2000).

    Google Scholar 

  32. N. G. Khlebtsov, A. G. Melnikov, L. A. Dykman, and V. A. Bogatyrev, in Photopolarimetry in Remote Sensing, Ed. by G. Videen, Ya. S. Yatskiv and M. I. Mishchenko (Kluwer Acad. Publishers, Dordrecht, 2004), vol. 161, Part 5, pp. 265–308.

    Article  Google Scholar 

  33. B. N. Khlebtsov, V. P. Zharov, A. G. Melnikov, et al., Nanotechnology 17(20), 5167 (2006).

    Article  ADS  Google Scholar 

  34. J. Schmitt, G. Decher, W. J. Dressick, et al., Adv. Mater. 9(1), 61 (1991).

    Article  Google Scholar 

  35. K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, Anal. Chem. 67(4), 735 (1995).

    Article  Google Scholar 

  36. E. Katz and I. Willner, Angew. Chem. Int. Ed. Engl. 43(45), 6042 (2004).

    Article  Google Scholar 

  37. N. G. Khlebtsov, L. A. Dykman, Ya. M. Krasnov, and A. G. Melnikov, Kolloid. Zh. 62(6), 765 (2000).

    Google Scholar 

  38. Yu. M. Yevdokimov, S. G. Skuridin, V. I. Salyanov, et al., J. Biomater. Nanobiotechnol. 2(4), 461 (2011).

    Article  Google Scholar 

  39. Yu. M. Yevdokimov, V. I. Salyanov, E. I. Kats, and S. G. Skuridin, Acta Naturae (in press).

  40. B. K. Vainshtein, Diffraction of X-rays by Chain Molecules (Elsevier Publishing Company, Amsterdam-London-New York, 1966).

    Google Scholar 

  41. N. Khlebtsov and L. Dykman, Chem. Soc. Rev. 40(3), 1547 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Yevdokimov.

Additional information

Original Russian Text © Yu.M. Yevdokimov, E.V. Shtykova, V.I. Salyanov, S.G. Skuridin, 2013, published in Biofizika, 2013, Vol. 58, No. 2, pp. 210–220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yevdokimov, Y.M., Shtykova, E.V., Salyanov, V.I. et al. Linear clusters of gold nanoparticles in quasinematic layers of DNA liquid-crystalline dispersion particles. BIOPHYSICS 58, 148–156 (2013). https://doi.org/10.1134/S0006350913020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350913020061

Keywords

Navigation