Advertisement

Biophysics

, Volume 58, Issue 1, pp 95–102 | Cite as

Interaction of a surface-active base with the fraction of membrane-bound Williams’ protons

  • L. S. Yaguzhinsky
  • K. A. Motovilov
  • E. M. Volkov
  • S. A. EremeevEmail author
Complex Systems Biophysics
  • 39 Downloads

Abstract

According to the Williams model, the work of mitochondrial respiratory H+ pumps gives rise to a fraction of membrane-bound protons (R-protons) that have excess free energy, which is used in the reaction of ATP synthesis. We have earlier managed to detect such a fraction in mitochondria and mitoplasts and to rigorously show (for mitoplasts) that the non-equilibrium R-proton fraction is localized on the surface of the inner membrane. Here we show that a surface-active compound 2,4,6-trichloro-3-pentadecylphenol anion (TCP-C15) selectively interacts with the R-proton fraction, and describe in detail its influence on mitochondrial respiration under conditions of R-proton generation. We also report endogenous regulation of the R-proton fraction volume, which is performed by the phosphate transport system. The results are discussed in terms of the local coupling model.

Keywords

surface-active phenols local coupling mitochondria adenine nucleotide translocator phosphate transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Mitchell, Nature 191, 144 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    H. Baum, J. G. S. Hall, and R. B. Nalder, in Energy Transduction in Respiration and Photosynthesis, Ed. by E. Quagriariello, S. Papa, C.S. Rossi (Adriatica Aditrice, Bari, 1982), pp. 747–755.Google Scholar
  3. 3.
    I. P. Krasinskaya, V. N. Marshansky, S. F. Dragunova, and L. S. Yaguzhinsky, FEBS Lett. 165, 176 (1984).CrossRefGoogle Scholar
  4. 4.
    A. P. Halestrap, Biochim. Biophys. Acta 973, 355 (1989).CrossRefGoogle Scholar
  5. 5.
    R. J. Williams, J. Theor. Biol. 1(1), 1 (1961).CrossRefGoogle Scholar
  6. 6.
    L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, FEBS Lett. 178, 331 (1984).CrossRefGoogle Scholar
  7. 7.
    Y. N. Antonenko, O. N. Kovbasnjuk, and L. S. Yaguzhinsky, Biochim. Biophys. Acta 1150, 45 (1993).CrossRefGoogle Scholar
  8. 8.
    V. I. Yurkov, M. S. Fadeeva, and L. S. Yaguzhinsky, Biochemistry (Moscow) 70(2), 195 (2005).CrossRefGoogle Scholar
  9. 9.
    I. P. Krasinskaya, M. V. Lapin, and L. S. Yaguzhinsky, FEBS Lett. 440, 223 (1998).CrossRefGoogle Scholar
  10. 10.
    V. S. Moiseeva, K. A. Motovilov, N. V. Lobysheva, et al., Dokl. Bioch. Biophys. 438, 127 (2011).CrossRefGoogle Scholar
  11. 11.
    I. M. Solodovnikova, V. I. Yurkov, A. A. Ton’shin, and L. S. Yaguzhinskii, Biophysics 49, 42 (2004).Google Scholar
  12. 12.
    K. A. Motovilov, V. I. Yurkov, E. M. Volkov, and L. S. Yaguzhinskii, Biol. Membrany 26(5), 408 (2009).Google Scholar
  13. 13.
    D. Johnson and H. Lardy, Meth. Enzymol. 10, 94 (1967).CrossRefGoogle Scholar
  14. 14.
    A. B. Kotlyar and A. D. Vinogradov, Biochim. Biophys. Acta 784, 24 (1984).CrossRefGoogle Scholar
  15. 15.
    R. Kramer, Exp. Physiol. 83, 259 (1998).ADSGoogle Scholar
  16. 16.
    L. S. Yaguzhinsky, L. I. Boguslavsky, A. G. Volkov, and A. B. Rakhmaninova, Nature 259, 494 (1976).ADSCrossRefGoogle Scholar
  17. 17.
    L. V. Eroshenko, A. S. Marakhovskaya, I. M. Vangeli, et al., Dokl. RAN 444, 448 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. S. Yaguzhinsky
    • 1
    • 2
  • K. A. Motovilov
    • 1
    • 2
  • E. M. Volkov
    • 1
  • S. A. Eremeev
    • 1
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia
  2. 2.Research and Education Center BioNanoPhysicsMoscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations