Skip to main content
Log in

Contractile properties, transversal stiffness and cytoskeletal protein content in Mongolian gerbils soleus fibers under long-term hindlimb suspension

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Structural and functional changes in Mongolian gerbil soleus fibers were analyzed after a 31-day hindlimb suspension. Contractile properties of muscle fibers were studied by means of tensometry; the transversal stiffness of different parts of the contractile apparatus was measured by atomic force microscopy, resting calcium level was estimated by fluorescence microscopy by using Fluo-4-AM; cytoskeletal protein content was determined by western blotting. It was shown that after gravitational unloading the maximal force of contraction and specific tension of fiber were significantly reduced, as well as calcium sensitivity actually lowered. At the same time, the transversal stiffness of Z-disk in the relaxed and activated state was decreased significantly compared to the control group. Desmin content was at the control level, but alpha-actinin-2, main structural protein of Z-disk, became considerably less after a 31-day hindlimb suspension. Besides, resting calcium level remained at control values during the simulated gravitational unloading. The data suggest that Z-disk destruction, as a result of alpha-actinin-2 content reduction, leads to changes in the lattice spacing and decreases contractile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Stevens, X. Holy, and Y. Mounier, Am. J. Physiol. 264, 770 (1993).

    Google Scholar 

  2. J. J. Widrick, J. G. Romatowski, K. M. Norenberg, et al., J. Appl. Physiol. 90, 2203 (2001).

    Google Scholar 

  3. E. V. Ponomareva, V. V. Kravtsova, E. V. Kachaeva, et al., Biofizika 53, 1087 (2008).

    Google Scholar 

  4. F. W. Booth and J. R. Kelso, Pflugers Arch. 342, 231 (1973).

    Article  Google Scholar 

  5. D. Deplanches, M. H. Mayet, E. I. Ilyina-Kakueva, et al., J. Appl. Physiol. 68, 48 (1990).

    Google Scholar 

  6. V. J. Caiozzo, F. Haddad, M. J. Baker, et al., J. Appl. Physiol. 81, 123 (1996).

    Google Scholar 

  7. C. P. Ingalls, J. C. Wenke, and R. B. Armstrong, Aviat. Space Environ. Med. 75(5), 471 (2001).

    Google Scholar 

  8. I. V. Ogneva, V. A. Kurushin, E. G. Altaeva, et al., J. Muscle Res. Cell Motil. 30(7–8), 261 (2009).

    Article  Google Scholar 

  9. M. Bartoli and I. Richard, Int. J. Biochem. Cell Biol. 37, 2115 (2005)

    Article  Google Scholar 

  10. D. L. Enns, T. Raastad, I. Ugelstad, et al., Eur. J. Appl. Physiol. 100(4), 445 (2007).

    Article  Google Scholar 

  11. K. S. McDonald and R. H. Fitts, J. Appl. Physiol. 79, 1796 (1995).

    Google Scholar 

  12. T. Toursel, L. Stevens, H. Granzier, et al., J. Appl. Physiol. 92, 1465 (2002).

    Google Scholar 

  13. V. J. Caiozzo, H. Richmond, S. Kaska, et al., J. Appl. Physiol. 103(4), 1150 (2007).

    Article  Google Scholar 

  14. I. V. Ogneva, V. A. Kurushin, M. M. Glashev, et al., Biofizika 55, 1117 (2010).

    Google Scholar 

  15. E. N. Lipets, E. V. Ponomareva, I. V. Ogneva, et al., Aviakosm. Ekol. Med. 43(3), 34 (2009).

    Google Scholar 

  16. E. Morey-Holton, R. K. Globus, A. Kaplansky, et al., Adv. Space. Biol. Med. 10, 7 (2005).

    Article  Google Scholar 

  17. I. V. Ogneva, D. V. Lebedev, and B. S. Shenkman, Biophys. J. 98(3) 418 (2010).

    Article  Google Scholar 

  18. E. G. Altaeva, I. V. Ogneva, and B. S. Shenkman, Tsitologiya 52, 770 (2010).

    Google Scholar 

  19. I. V. Ogneva, J. Appl. Physiol. 109(6), (2010).

  20. H. Towbin, T. Staehlin, and J. Gordon, Proc. Natl. Acad. Sci. USA 76, 4350 (1970).

    Article  ADS  Google Scholar 

  21. Y. P. Wang and F. Fuchs, J. Muscle Res. Cell Motil. 21, 313 (2000).

    Article  Google Scholar 

  22. D. Goll, V. Thompson, H. Li, et al., Physiol. Rev. 83, 731 (2003).

    Google Scholar 

  23. E. G. Altaeva, L. A. Lysenko, N. P. Kantserova, et al., Dokl. RAN 433(1), 138 (2010).

    Google Scholar 

  24. D. G. Peters, H. Mitchell-Felton, and S. C. Kandarian, Amer. J. Physiol. 276, 1218 (1999).

    Google Scholar 

  25. B. S. Shenkman, A. M. Moukhina, K. C. Litvinova, et al., J. Gravit. Physiol. 12, 119 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Ponomareva, I.V. Ogneva, 2012, published in Biofizika, 2012, Vol. 57, No. 4, pp. 683–689.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ponomareva, E.V., Ogneva, I.V. Contractile properties, transversal stiffness and cytoskeletal protein content in Mongolian gerbils soleus fibers under long-term hindlimb suspension. BIOPHYSICS 57, 519–524 (2012). https://doi.org/10.1134/S0006350912040148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350912040148

Keywords

Navigation