Advertisement

Biophysics

, Volume 57, Issue 1, pp 76–80 | Cite as

Glutathione-dependent regulation of platelet aggregation with neutrophils and tumor cells

  • I. V. Gorudko
  • E. V. Shamova
  • L. M. Shishlo
  • A. V. Mukhortova
  • V. I. Prokhorova
  • O. M. Panasenko
  • S. A. Gusev
  • S. N. Cherenkevich
Cell Biophysics
  • 42 Downloads

Abstract

It is shown that in the presence of reduced glutathione at low concentrations (1–5 μM) the extent of platelet aggregation with neutrophils increases and the lag period of platelet aggregation induced by tumor cells decreases. At the same time in the presence of reduced glutathione at high concentration (3 mM) the extent of platelet aggregation with neutrophils decreases, and the lag period of platelet aggregation induced by tumor cells increases. It is established that glutathione-dependent regulation of the intercellular contact formation between platelets and neutrophils depends on the ratio of glutathione oxidized and reduced forms: at fixed total glutathione concentration of 5 μM, increase of glutathione redox potential from −175 mV to 0 mV led to reduction in platelet aggregation with neutrophils. Thus, it is shown for the first time, that GSH has priming effect on the platelet aggregation with neutrophils and tumor cells, which may contribute to the regulation of inflammatory diseases and cancer.

Keywords

glutathione neutrophils tumor cells platelets aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. P. Jones, Am. J. Physiol. Cell Physiol. 295, 849 (2008).CrossRefGoogle Scholar
  2. 2.
    A. Paolicchi, S. Dominici, L. Pieri, et al., Biochem. Pharmacol. 64, 1027 (2002).CrossRefGoogle Scholar
  3. 3.
    H. L. Martin and P. Teismann, FASEB J. 23, 3263 (2009).CrossRefGoogle Scholar
  4. 4.
    A. Kumar, S. Sharma, C.S. Pundir, et al., Cancer Lett. 94, 107 (1995).CrossRefGoogle Scholar
  5. 5.
    H. Shimizu, Y. Kiyohara, I. Kato, et al., Stroke 35, 2072 (2004).CrossRefGoogle Scholar
  6. 6.
    P. S. Samiec, C. Drews-Botsch, E. W. Flagg, et al., Free Radic. Biol. Med. 24, 699 (1998).CrossRefGoogle Scholar
  7. 7.
    K. P. Vasilenko, E. B. Burova, V. G. Antipov, et al., Tsitologiya 48, 500 (2006).Google Scholar
  8. 8.
    P. Klatt and S. Lamas, Eur. J. Biochem. 267, 4928 (2000).CrossRefGoogle Scholar
  9. 9.
    D. W. Voehringer, Free Radic. Biol. Med. 27, 945 (1999).CrossRefGoogle Scholar
  10. 10.
    D. W. Essex and M. Li, Biochemistry 42, 136 (2003).CrossRefGoogle Scholar
  11. 11.
    E. V. Shamova, I. V. Gorudko, E. S. Drozd, et al., Eur. Biophys. J. 40, 208 (2011).CrossRefGoogle Scholar
  12. 12.
    L. S. Kurilova, Z. I. Krutetskaya, O. E. Lebedeva, et al., Tsitologiya 50, 452 (2008).Google Scholar
  13. 13.
    J. K. Burgess, K. A. Hotchkiss, C. Suter, et al., J. Biol. Chem. 275, 9758 (2000).CrossRefGoogle Scholar
  14. 14.
    A. McNicol and S. J. Israels, Cardiovasc. Hematol. Disord. Drug Targets 8, 99 (2008).CrossRefGoogle Scholar
  15. 15.
    D. D. Wagner and P. C. Burger, Thromb. Vasc. Biol. 23, 2131 (2003).CrossRefGoogle Scholar
  16. 16.
    C. S. Rinder, J. L. Bonan, H. M. Rinder, et al., Blood 79, 1201 (1992).Google Scholar
  17. 17.
    K. Konstantopoulos, J. C. Grotta, C. Sills, et al., Thromb Haemost. 74, 1329 (1995).Google Scholar
  18. 18.
    M. Gawaz, A. Reininger, and F. J. Neumann, Thromb. Res. 83, 341 (1996).CrossRefGoogle Scholar
  19. 19.
    P. Juarez, D. Alonso-Escolano, and M. W. Radomski, Br. J. Pharmacol. 143, 819 (2004).CrossRefGoogle Scholar
  20. 20.
    A. V. Timoshenko, K. Kayser, and H. J. Gabius, Meth. Mol. Med. 9, 441 (1998).Google Scholar
  21. 21.
    J. L. Nation, Stain Technol. 58, 347 (1983).Google Scholar
  22. 22.
    W. G. Kirlin, J. Cai, S. A. Thompson, et al., Free Radic. Biol. Med. 27, 1208 (1999).CrossRefGoogle Scholar
  23. 23.
    I. V. Gorudko, T. V. Vakhrusheva, A. V. Mukhortova, et al., Biol. Membrany 27, 314 (2010).Google Scholar
  24. 24.
    H. M. Rinder, J. L. Bonan, C. S. Rinder, et al., Blood 78, 1760 (1991).Google Scholar
  25. 25.
    I. Ott, F.-J. Neumann, M. Gawaz, et al., Circulation 94, 1239 (1996).Google Scholar
  26. 26.
    T. G. Diacovo, S. J. Roth, J. M. Buccola, et al., Blood 88, 146 (1996).Google Scholar
  27. 27.
    S. Sheikh and G. B. Nash, Blood 87, 5040 (1996).Google Scholar
  28. 28.
    C. Weber and T. A. Springer, J. Clin. Invest. 100, 2085 (1997).CrossRefGoogle Scholar
  29. 29.
    D. I. Simon, Z. Chen, H. Xu, et al., J. Exp. Med. 192, 193 (2000).CrossRefGoogle Scholar
  30. 30.
    T. G. Diacovo, A. R. de Fougerolles, D. F. Bainton, et al., J. Clin. Invest. 94, 1243 (1994).CrossRefGoogle Scholar
  31. 31.
    S. Santoso, U. J. H. Sachs, H. Kroll, et al., J. Exp. Med. 196, 679 (2002).CrossRefGoogle Scholar
  32. 32.
    L. Oleksowicz and J. P. Dutcher, Med. Oncol. 12, 95 (1995).CrossRefGoogle Scholar
  33. 33.
    A. Chigaev, G. J. Zwartz, T. Buranda, et al., J. Biol. Chem. 279, 32435 (2004).CrossRefGoogle Scholar
  34. 34.
    J. Lahav, K. Jurk, O. Hess, et al., Blood 100, 2472 (2002).CrossRefGoogle Scholar
  35. 35.
    B. Yan and J. W. Smith, J. Biol. Chem. 275, 39964 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. V. Gorudko
    • 1
  • E. V. Shamova
    • 1
  • L. M. Shishlo
    • 2
  • A. V. Mukhortova
    • 1
  • V. I. Prokhorova
    • 2
  • O. M. Panasenko
    • 3
  • S. A. Gusev
    • 3
  • S. N. Cherenkevich
    • 1
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.Aleksandrov N.N. National Cancer Center of BelarusMinskBelarus
  3. 3.Research Institute of Physico-Chemical MedicineMoscowRussia

Personalised recommendations