, Volume 56, Issue 6, pp 1102–1105 | Cite as

Laser hyperthermia of tumors using gold nanoparticles monitored by optical coherence tomography and acoustic thermometry

  • M. A. Sirotkina
  • V. V. Elagin
  • P. V. Subochev
  • N. N. Denisov
  • M. V. Shirmanova
  • E. V. Zagainova
Complex Systems Biophysics


Local laser hyperthermia of grafted RShM-5 tumors in mice with the use of plasmon resonant gold nanoparticles has been carried out. Accumulation of particles in the tumor was monitored in vivo noninvasively by optical coherence tomography. Thereby it was determined that the maximal content of nanoparticles in the tumor was reached within 5 h after intravenous administration, and laser hyperthermia was performed at this time. Monitoring the tumor temperature during the treatment by IR thermography and acoustic thermometry showed that the nanoparticles provided efficient temperature elevation inside the tumor as well as more selective heating. Local laser hyperthermia with gold nanoparticles, but not the laser exposure alone, substantially inhibited tumor growth in several days after a single session.


plasmon resonance gold bipyramids local hyperthermia cervical carcinoma OCT passive acoustic thermometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Falk and R. D. Issels, Int. J. Hyperthermia 17, 1 (2001).CrossRefGoogle Scholar
  2. 2.
    G. F. Baronzio and E. D. Hager, Hyperthermia In Cancer Treatment: A Primer Series Medical Intelligence Unit XXIII (New York, 2006).Google Scholar
  3. 3.
    R. R. Anderson and J. A. Parrish, Science 200, 524 (1983).ADSCrossRefGoogle Scholar
  4. 4.
    G. Ara, R. Anderson, K. Mandel, and A. R. Oseroff, Photochem. Photobiol. 47, 37S (1988).Google Scholar
  5. 5.
    G. Jori and J. D. Spikes, J. Photochem. Photobiol. no. 6, 93 (1990).Google Scholar
  6. 6.
    W. R. Chen, R. L. Adams, E. Heaton, et al., Cancer Lett., no. 88, 15 (1995).Google Scholar
  7. 7.
    W. Cai, T. Gao, H. Hong, and J. Sun, Nanotechnology, Science and Applications, no. 1, 17 (2008).Google Scholar
  8. 8.
    J. M. Stern, J. Stanfield, W. Kabbani, et al., J. Urology 179, 748 (2008).CrossRefGoogle Scholar
  9. 9.
    H. Du, R. A. Fuh, J. Li, et al., Photochem. Photobiol. 6(2), 141 (1998).Google Scholar
  10. 10.
    B. Khlebtsov, V. Zharov, A. Melnikov, et al., Nanotechnology, no. 17, 5167 (2006).Google Scholar
  11. 11.
    M. P. Melancon, W. Lu, Z. Yang, et al., Mol. Cancer Ther. 7, 1730 (2008).CrossRefGoogle Scholar
  12. 12.
    D. P. O’Neal, L. R. Hirsch, N. J. Halas, et al., Cancer Lett., no. 209, 171 (2004).Google Scholar
  13. 13.
    C. Loo, A. Lowery, N. J. Halas, et al., Nanoletters 5, 709 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    P. Diagaradjane, A. Shetty, J. C. Wang, et al., Nanoletters 8, 1492 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    L. Hirsch, R. J. Stafford, J. A. Bankson, et al., Proc. Natl. Acad. Sci. USA 100, 13549 (2003).ADSCrossRefGoogle Scholar
  16. 16.
    A. M. Gobin, M. H. Lee, N. J. Halas, et al., Nanoletters 7, 1929 (2007).ADSCrossRefGoogle Scholar
  17. 17.
    R. T. Zaman, P. Diagaradjane, S. Krishnan, and J. W. Tunnell, IEEE J. Sel. Top. Quant. Elec. 13, 1715 (2007).CrossRefGoogle Scholar
  18. 18.
    C. S. Kim, P. Wilder-Smith, Y.-C. Ahn, and L.-H. L. Liaw, J. Biomed. Optics 14, 034008 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    J. C. Y. Kah, T. H. Chow, B. K. Ng, and S. G. Razul, Appl. Optics 48(10), D96 (2009).CrossRefGoogle Scholar
  20. 20.
    M. A. Sirotkina, E. V. Zagaynova, M. V. Shirmanova, et al., Proc. SPIE. Bellingham: SPIE 7188, 71880L–1 (2009).ADSGoogle Scholar
  21. 21.
    J. Van der Zee, J. N. Peer-Valstar, and P. J. M. Rietveld, Int. J. Radiat. Oncol. Biol. Phys. 40, 1205 (1998).CrossRefGoogle Scholar
  22. 22.
    A. N. Ozerni, A. N. Zelenetskii, T. A. Akopova, et al., Vysokomol. Soed. 48, 983 (2006).Google Scholar
  23. 23.
    Ts. Vonchel’, Z. S. Smirnova, I. Yu. Kubasova, and A. Yu. Baryshnikov, Ros. Bioterapevt. Zh. 1(4), 39 (2002).Google Scholar
  24. 24.
    Manual on Optical Coherence Tomography, Eds. by N. D. Gladkova, N. M. Shakhova, A. M. Sergeev (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  25. 25.
    R. Belyaev, G. Volkov, and E. Krotov, in Topical Problems of Biophotonics (2009), p. 187.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. A. Sirotkina
    • 1
    • 2
  • V. V. Elagin
    • 1
    • 2
  • P. V. Subochev
    • 3
  • N. N. Denisov
    • 4
  • M. V. Shirmanova
    • 1
  • E. V. Zagainova
    • 1
    • 2
  1. 1.Nizhny Novgorod State Medical AcademyNizhny NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhny NovgorodRussia
  3. 3.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  4. 4.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations