Skip to main content
Log in

Design and testing of a new photosensitizer based on an ytterbium porphyrazine complex

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The ytterbium tetraphenyltetracyanoporphyrazine complex (YbPz) has been studied as a potential photosensitizer for fluorescence diagnostics and photodynamic therapy of cancer. A water-miscible formulation of YbPz has been prepared using PEG 6000. The new compound shows intense absorption and fluorescence in the “optical window” of biological tissues (absorption maximum ∼590 nm, emission maximum ∼625 nm). Fluorescence enhancement (a 50-fold increase in YbPz quantum yield) is observed in blood serum. In cultured human cancer cells, YbPz quickly accumulates around the nuclei, presumably in lysosomes. The distribution and pharmacokinetics of YbPz in mice have been investigated by a novel method of in vivo transillumination fluorescence imaging. The highest level of YbPz in grafted mouse cervical carcinoma is maintained from 3 to 6 h after i.v. injection, its half-life in the tumor being ∼24 h. However, the selectivity of YbPz for the tumor vs. normal tissue is not high enough. Most of the drug is cleared from the body (mainly via liver and intestine) in two days. Conventional ex vivo methods (confocal microscopy and point spectroscopic measurements) have revealed the largest content of YbPz in the intestine, liver, tumor, and skin. In general, the optical characteristics of YbPz as well as the features of its interaction with biological objects make it a promising candidate drug for photodynamic therapy and/or fluorescence diagnostics of cancer, though searching for formulations with higher tumor selectivity remains a topical task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bulgakova, D. M. Yagudaev, A. E. Sorokovatyi, and A. V. Geinits, Ros. Bioterapevt. Zh. 6, 11 (2007).

    Google Scholar 

  2. E. G. Vakulovskaya, V. P. Letyagin, and E. M. Pogodina, Ros. Bioterapevt. Zh. 2, 57 (2003).

    Google Scholar 

  3. V. I. Chissov, V. V. Sokolov, N. N. Bulgakova, and E. V. Filonenko, Ros. Bioterapevt. Zh. 6, 45 (2007).

    Google Scholar 

  4. A. P. Castano, T. N. Demidova, and M. R. Hamblin, Photodiag. Photodyn. Therapy 2(2), 91 (2005).

    Article  Google Scholar 

  5. J. J. Schuitmaker, P. Baas, H. L. van Leengoed, et al., J. Photochem. Photobiol. 34(1), 3 (1996).

    Article  Google Scholar 

  6. K. Berg, P. K. Selbo, A. Weyergang, et al., J. Microscopy 218, 133 (2005)

    Article  MathSciNet  Google Scholar 

  7. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Wesslender, Nat. Biotechnol. 23, 313 (2005).

    Article  Google Scholar 

  8. M. Shirmanova, E. Zagaynova, M. Sirotkina, et al., J. Biomed. Opt. 15, 048004 (2010).

    Article  ADS  Google Scholar 

  9. N. B. Morozova, R. I. Yakubovskaya, V. M. Derkacheva, and E. A. Luk″yanets, Ros. Onkol. Zh., no. 1, 37 (2007).

  10. M. R. Hamblin, M. Rajadhyaksha, T. Momma, et al., Br. J. Cancer 81(2), 261 (1999).

    Article  Google Scholar 

  11. N. I. Kazachkina, N. N. Zharkova, G. I. Fomina, et al., Proc. SPIE 2924, 233 (1996).

    Article  ADS  Google Scholar 

  12. Z. S. Smirnova, N. A. Oborotova, O. A. Makarova, et al., Pharm. Chem. J. 39(7), 341 (2005).

    Article  Google Scholar 

  13. L. G. Klapshina, W. E. Douglas, I. S. Grigoryev, et al., Chem. Commun. 46, 8398 (2010).

    Article  Google Scholar 

  14. I. V. Turchin, V. A. Kamensky, V. I. Plehanov, et al., J. Biomed. Opt. 13, 041310 (2008).

    Article  ADS  Google Scholar 

  15. S. Bonneaua, P. Morliéreb, and D. Brault, Biochem. Pharmacol. 68, 1443 (2004).

    Article  Google Scholar 

  16. G. M. Malham, R. J. Thomsen, G. L. Finlay, and B. C. Baguley, Br. J. Neurosurg. 10, 51 (1996).

    Article  Google Scholar 

  17. A. B. Uzdenskii, Cellular and Molecular Mechanisms of Photodynamic Therapy (Nauka, Moscow, 2010) [in Russian].

    Google Scholar 

  18. V. N. Zalesskii and O. B. Dynnik, Ukrains’kii Medichii Chasopis 1(45), 92 (2005).

    Google Scholar 

  19. A. S. Sobolev, A. A. Rosenkranz, and Gilyazova, Biophysics 49, 337 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Shirmanova, I.V. Balalaeva, N.Yu. Lekanova, S.A. Mysyagin, A.A. Brilkina, L.G. Klapshina, E.V. Zagaynova, 2011, published in Biofizika, 2011, Vol. 56, No. 6, pp. 1117–1124.

The experimental data contained herein fully correspond to the original publication but the text was substantially revised for the English version. A.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirmanova, M.V., Balalaeva, I.V., Lekanova, N.Y. et al. Design and testing of a new photosensitizer based on an ytterbium porphyrazine complex. BIOPHYSICS 56, 1083–1087 (2011). https://doi.org/10.1134/S0006350911060182

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911060182

Keywords

Navigation