Skip to main content
Log in

DNA damage in thymocytes of mice after exposure of the whole body to combined action of cadmium ions and γ radiation

  • Radiobiology and Radioecology
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of combined action of cadmium chloride at a dose of 0.5 mg/kg of body weight and γ-radiation of 1 Gy on induction of DNA damage in thymocytes and the total number of cells in the thymus of mice was studied. We found that injection of CdCl2 0.5 h prior to irradiation decreased the number of single-strand DNA breaks and the number of alkali-labile sites in thymocytes 48 h after irradiation as compared to the γ-radiation effect only. This effect was associated with a strong decrease in the total number of thymocytes in this organ as compared to the action of cadmium ions and γ radiation separately. This masked the general genotoxic effect of combined treatment and created an illusion of a radioprotective effect of cadmium ions. Injection of cadmium chloride into mice 24 h prior to irradiation was followed by an additive increase in the number of the single-strand DNA breaks and the number of alkali-labile sites in thymocytes as compared to the respective controls such as the separate effects of cadmium ions and irradiation. We revealed a simultaneous decrease in the part of DNA tightly bound to proteins, i.e., DNA-protein cross-links as compared to the effect of γ-radiation only. We did not observe any statistically significant changes in the total number of thymocytes as compared to the separate effects of cadmium ions and irradiation. Thus, our data show that exposure of murine thymocytes to combined action of cadmium ions and γ-radiation at the doses and with the methods of treatment used induced additive effects but not antagonistic effects or protection against radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer Monographs on the Evaluation of Carcinogenic Risks to Humans, Lyon: IARC Scientific Publications 58, 119 (1993).

    Google Scholar 

  2. S. Candéias, B. Pons, M. Viau, et al., Mutat. Res. 694(1–2), 53 (2010)

    Google Scholar 

  3. S. Nemmiche, D. Chabane-Sari, M. Kadri, and P. Guiraud, Toxicol. in Vitro 25(1), 191 (2011).

    Article  Google Scholar 

  4. A. Hartwig, Biometals 23(5), 951 (2010).

    Article  Google Scholar 

  5. M. Valverde, C. Trejo, and E. Rojas, Mutagenesis 16(3), 265 (2001).

    Article  Google Scholar 

  6. C. T. McMurray and J. A. Tainer, Nat. Genet. 34(3), 239 (2003).

    Article  Google Scholar 

  7. S. Chater, T. Douki, C. Garrel, et al., Comptes Rendus Biol. 331(6), 426 (2008).

    Article  Google Scholar 

  8. Y. Nzengue, R. Steiman, C. Garrel, et al., Toxicology 243(1–2), 193 (2008).

    Article  Google Scholar 

  9. M. Viau, J. Gastaldo, Z. Bencokova, et al., Mutat. Res. 654(1), 13 (2008).

    Google Scholar 

  10. Y. O. Son, J. C. Lee, J. A. Hitron, et al., Toxicol. Sci. 113(1), 127 (2010).

    Article  Google Scholar 

  11. P. Joseph, Toxicol. Appl. Pharmacol. 238(3), 272 (2009).

    Article  Google Scholar 

  12. A. A. El-Ghor, M. M. Noshy, H. M. El Ashmaoui, et al., Mutat. Res. 696(2), 160 (2010).

    Google Scholar 

  13. K. P. Singh, R. Kumari, C. Pevey, et al., Cancer Lett. 279(1), 84 (2009).

    Article  Google Scholar 

  14. Y. Pan, D. Yuan, J. Zhang, et al., Radiat. Res. 171(4), 446 (2009).

    Article  Google Scholar 

  15. Y. Pan, D. Yuan, J. Zhang, and C. Shao, Mutat. Res. 707(1–2), 67 (2011).

    Google Scholar 

  16. K. V. Privezentsev, N. P. Sirota, and A. I. Gaznev, Radiats. Biol. Radioecol. 36(2), 234 (1996).

    Google Scholar 

  17. S. Hornhardt, M. Gomolka, L. Walsh, and T. Jung, Mutat. Res. 600(1–2), 165 (2006).

    Google Scholar 

  18. D. Grygoryev, O. Moskalenko, and J. D. Zimbrick, Dose Response 6(3), 283 (2008).

    Article  Google Scholar 

  19. N. I. Ryabchenko, M. V. Grigor’ev, B. P. Ivannik, and A. I. Kutmin, Radiobiologiya 24(2), 154 (1984).

    Google Scholar 

  20. A. Zhitkovich and M. Costa, Carcinogenesis 13(8), 1485 (1992).

    Article  Google Scholar 

  21. A. N. Osipov, M.V. Grigor’ev, V.D. Sypin, et al., Radiats. Biol. Radioecol. 40(4), 373 (2000).

    Google Scholar 

  22. S. A. Altman, T.H. Zastawny, L. Randers-Eichhorn, et al., Free Radic Biol Med. 19(6), 897 (1995).

    Article  Google Scholar 

  23. B. P. Ivannik, N. I. Ryabchenko, L. A. Dzikovskaya, et al., Radiats. Biol. Radioecol. 40(6), 656 (2000).

    Google Scholar 

  24. A.N. Osipov and G. Ya. Kolomiitseva, Biokhimiya 61(5), 927 (1996).

    Google Scholar 

  25. K. V. Privezentsev, Tsitol. Genet. 31(1), 11 (1997).

    Google Scholar 

  26. Y. J. Kang, Exp. Biol. Med. (Maywood) 231(9), 1459 (2006).

    Google Scholar 

  27. M. Sato and M. Kondoh, Tohoku J. Exp. Med. 196(1), 9 (2002).

    Article  Google Scholar 

  28. K. Shibuya, J. S. Suzuki, H. Kito, et al., J. Toxicol. Sci. 33(4), 479 (2008).

    Article  Google Scholar 

  29. K. Shibuya, N. Nishimura, J. S. Suzuki, et al., J. Toxicol. Sci. 33(5), 651 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Osipov, N.I. Ryabchenko, B.P. Ivannik, V.I. Ryabchenko, 2011, published in Radiatsionnaya Biologiya. Radioekologiya, 2011, Vol. 51, No. 3, pp. 315–320.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osipov, A.N., Ryabchenko, N.I., Ivannik, B.P. et al. DNA damage in thymocytes of mice after exposure of the whole body to combined action of cadmium ions and γ radiation. BIOPHYSICS 56, 936–940 (2011). https://doi.org/10.1134/S0006350911050150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911050150

Keywords

Navigation