Skip to main content
Log in

Structure of bound water and topological rearrangement waves

  • Nanotechnologies in Vivo
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The evolutionary conception of bound water and the structure of liquid water has been briefly described. The function of the radial distribution of water molecules has been analyzed. The intermediate maxima at 0.35 nm of the function is shown to be described in the frame of the model of continuous hydrogen bond net without invoking the mixed and two-state models of liquid water. Using a simple extensive parametric structure, spiral 30/11, a model of topological rearrangement waves including bifurcate bonds is suggested. These waves can transmit the information on conformational transitions between cellular elements through the virtual spirals of bound water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kauzmann, Adv. Protein Chem. 14, 1 (1959).

    Article  Google Scholar 

  2. M. V. Vol’kenshtein, Molecular Biophysics (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. S. Lewin, Displacement of Water and Its Control of Biochemical Reactions (Acad. Press, London, New York, 1974).

    Google Scholar 

  4. N. G. Esipova, N. S. Andreeva, and T. V. Gatovskaya, Biofizika 3, 529 (1958).

    Google Scholar 

  5. H. Meitrovich and H. A. Scheraga, Macromolecules 13, 1406 (1980).

    Article  ADS  Google Scholar 

  6. M. A. Williams, J. M. Goodfellow, and J. M. Thornton, Protein Sci. 3, 1224 (1994).

    Article  Google Scholar 

  7. V. I. Lobyshev and L. P. Kalinichenko, Isotopic Effects of D2O in Biological Systems (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  8. S. Park and J. G. Saven, Proteins 60, 450 (2005).

    Article  Google Scholar 

  9. A. Szent-Gyorgyi, Bioenergetics (Mir, Moscow, 1960) [in Russian].

    Google Scholar 

  10. N. A. Bul’enkov, Biofizika 36, 181 (1991).

    Google Scholar 

  11. N. A. Bul’enkov, Biophysics 50, 811 (2005).

    Google Scholar 

  12. A. P. Sommer and A. E. Pavlath, Crystal Growth & Design 7(1), 18 (2007).

    Article  Google Scholar 

  13. V. I. Lobyshev, A. B. Solovei, and N. A. Bul’enkov, Biophysics 48, 932 (2003).

    Google Scholar 

  14. D. Eisenberg and W. Kautzman, Water Structure and Properties (Gidrometeoizdat, Leningrad, 1975) [in Russian].

    Google Scholar 

  15. J. Morgan and B. E. Warren, J. Chem. Phys. 6, 666 (1938).

    Article  ADS  Google Scholar 

  16. A. H. Narten, M. D. Danford, and H. A. Levy, Discuss. Faraday Soc. 43, 97 (1967).

    Article  Google Scholar 

  17. O. Ya. Samoilov, Zh. Fiz. Khimii 20, 1411 (1946).

    Google Scholar 

  18. O. Ya. Samoilov, Structure of Water Solutions of Electrolytes and Hydration of Ions (Izd. AN SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  19. G. Nemethy and H. A. Scheraga, J. Chem. Phys. 36, 3382 (1962).

    Article  ADS  Google Scholar 

  20. J. A. Pople, Proc. Roy. Soc. A205, 163 (1951).

    ADS  Google Scholar 

  21. L. Bosio, S.-H. Chen, and J. Teixeira, Phys. Rev. A 27, 1468 (1983).

    Article  ADS  Google Scholar 

  22. L. Fu, A. Bienenstock, and S. Brennan, J. Chem. Phys. 131, 234702 (2009).

    Article  ADS  Google Scholar 

  23. J. E. Bernal, Proc. Roy. Soc. A280. 299 (1964).

    ADS  Google Scholar 

  24. A. B. Solovei and V. I. Lobyshev, Zh. Fiz. Khimii 80, 1778 (2006).

    Google Scholar 

  25. X. Chen, I. Weber, and R. W. Harrison, J. Phys. Chem. B 112(38), 12073 (2008).

    Article  Google Scholar 

  26. H. E. Stanley, S. V. Buldyrev, G. Franzese, et al., J. Phys.: Condens. Matter. 22, 284101 (12pp) (2010).

    Article  Google Scholar 

  27. B. Chai, H. Yoo, and G. H. Pollack, J. Phys. Chem. B. 113, 13953 (2009).

    Article  Google Scholar 

  28. B. Chai and G. H. Pollack, J. Phys. Chem. B. 114, 5371 (2010).

    Article  Google Scholar 

  29. S. S. Xantheas, in Recent Theoretical and Experimental Advances in Hydrogen Bonded Clusters, Ed. by S. S. Xantheas (NATO ASI Series. Series C: Math. and Phys. Sci. 2010), vol. 561, pp. 119–228.

  30. P. A. Giguere, J. Raman Spectr. 15, 354 (1984).

    Article  ADS  Google Scholar 

  31. G. Walford and J. Dore, Mol. Phys. 48, 1031 (1983).

    Article  ADS  Google Scholar 

  32. N. A. Chumaevskii and M. N. Rodnikova, J. Mol. Liq. 106, 167 (2003).

    Article  Google Scholar 

  33. N. A. Chumaevskii, M. N. Rodnikova, and D. A. Sirotkin, Zh. Neorg. Khimii 50(4), (2005).

  34. S. C. Santucci, D. Fioretto, L. Comez, et al., Phys. Rev. Lett. 97, 5701 (2006).

    Article  Google Scholar 

  35. M. N. Rodnikova, Zh. Fiz. Khimii 67, 275 (1993).

    Google Scholar 

  36. Z. I. Vishnevskaya, V. N. Morozov, and V. I. Lobyshev, Biofizika 35, 43 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.I. Lobyshev, A.B. Solovey, 2011, published in Biofizika, 2011, Vol. 56, No. 5, pp. 848–856.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobyshev, V.I., Solovey, A.B. Structure of bound water and topological rearrangement waves. BIOPHYSICS 56, 816–823 (2011). https://doi.org/10.1134/S0006350911050101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911050101

Keywords

Navigation