Skip to main content
Log in

Biomimetic nanosystems and novel composite nanobiomaterials

  • Nanotechnologies in Medicine and Industry
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  2. S. P. Gubin, N. A. Kataeva, and G. B. Khomutov, Izv. RAN Ser. Khim., no. 4, 811 (2005).

  3. S. P. Gubin, Yu. A. Koksharov, G. B. Khomutov, and G. Yu. Yurkov, Usp. Khimii 74(6), 539 (2005).

    Google Scholar 

  4. Nanobiotechnology: Concepts, Applications and Perspectives, Ed. by C.M. Niemeyer, C.A. Mirkin (C.H.I.P.S. Weimar, Texas, 2004).

    Google Scholar 

  5. Nanomaterials for Application in Medicine and Biology, Ed. by M. Giersig, G.B. Khomutov (Springer, Dordrecht, The Netherlands, 2008).

    Google Scholar 

  6. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, and B. N. Khlebtsov, Ros. Nanotekhnol. 2(3–4), 69 (2007).

    Google Scholar 

  7. The Biomineralization of Nano- and Micro-strructures, Ed. by E. Bauerlein (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  8. Iron Biominerals, Ed. by R. B. Frankel, R. P. Blakemore (Plenum Press, New York, 1991).

    Google Scholar 

  9. S. Mann, Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, New York, 2001).

    Google Scholar 

  10. Bio-inorganic Hybrid Nanomaterials, Ed. by E. RuizHitzky, K. Ariga, Y.M. Lvov (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  11. N. L. Rosi and C. A. Mirkin, Chem. Rev. 105, 1547 (2005).

    Article  Google Scholar 

  12. W. J. Parak, D. Gerion, T. Pellegrino, et al., Nanotechnology 14, R15 (2003).

    Article  ADS  Google Scholar 

  13. L. A. Bauer, N. S. Birenbaum, and G. J. Meyer, J. Mater. Chem. 14, 517 (2004).

    Article  Google Scholar 

  14. I. Safarik and M. Safarikova, Chemical Monthly 133, 737 (2002).

    Google Scholar 

  15. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005).

    Article  Google Scholar 

  16. G. B. Khomutov, Doctoral dissertation (MGU, 2006).

  17. A. N. Tikhonov, G. B. Khomutov, E. K. Ruuge, and L. A. Blumenfeld, Biochim. Biophys. Acta 637, 321 (1981).

    Article  Google Scholar 

  18. V. V. Prushenko, M. S. Gins, V. K. Gins, and A. N. Tikhonov, Fiziol. Rast. 49, 656 (2002).

    Google Scholar 

  19. G. B. Khomutov, S. A. Yakovenko, E. S. Soldatov, et al., Biol. Membrany 13, 612 (1996).

    Google Scholar 

  20. G. G. Roberts, Langmuir-Blodgett Films (Plenum Press, NY., 1990).

    Google Scholar 

  21. G. B. Khomutov, Adv. Colloid Interface Sci. 111, 79 (2004).

    Article  Google Scholar 

  22. G. B. Khomutov and Yu. A. Koksharov, Adv. Colloid Interface Sci. 122, 119 (2006).

    Article  Google Scholar 

  23. G. B. Khomutov, E. S. Soldatov, S. P. Gubin, et al., Thin Solid Films 327–329, 550 (1998).

    Article  Google Scholar 

  24. G. B. Khomutov, L. V. Belovolova, V. V. Khanin, et al., Colloids and Surfaces A 198–200, 745 (2002).

    Article  Google Scholar 

  25. A. Yu. Obydenov, S. P. Gubin, V. V. Khanin, et al., Colloids and Surfaces A 198–200, 389 (2002).

    Article  Google Scholar 

  26. G. B. Khomutov, L. V. Belovolova, S. P. Gubin, et al., Bioelectrochemistry 55, 177 (2002).

    Article  Google Scholar 

  27. G. B. Khomutov, V. V. Kislov, M. N. Antipina, et al., Microelectronic Engineering 69(2–4), 373 (2003).

    Article  Google Scholar 

  28. V. Kislov, B. Medvedev, Yu. Gulyaev, et al., Intern. J. Nanosci. 6, 373 (2007).

    Article  Google Scholar 

  29. A. A. Zubilov, S. P. Gubin, A. K. Korotkov, et al., Pis’ma ZhTF 21(5), 41 (1994).

    Google Scholar 

  30. E. S. Soldatov, V. V. Khanin, A. S. Trifonov, et al., Pis’ma ZhETF 64, 510 (1996).

    ADS  Google Scholar 

  31. S. P. Gubin, V. V. Kolesov, E. S. Soldatov, et al., Patent RU 2105386 (1998).

  32. S. P. Gubin, V. V. Kolesov, E. S. Soldatov, et al., Patent RU 2106041 (1998).

  33. S. P. Gubin, Yu. V. Gulayev, G. B. Khomutov, et al., Nanotechnology 13, 185 (2002).

    Article  ADS  Google Scholar 

  34. Multilayer Thin Films. Sequential Assembly of Nanocomposite Materials, Ed. by G. Decher, J. B. Schlenoff (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  35. R. K. Iler, J. Colloid Interface Sci. 21, 569 (1996).

    Article  Google Scholar 

  36. R. K. Iler, US Patent 3485658 (1969).

  37. G. Decher, Science 277, 1232 (1997).

    Article  Google Scholar 

  38. Yu. M. Lvov and G. B. Sukhorukov, Membr. Cell Biol. 11, 277 (1997).

    Google Scholar 

  39. W. Li, M. Xian, Z. Wang, et al., Thin Solid Films 386, 121 (2001).

    Article  ADS  Google Scholar 

  40. T. A. Kolesnikova, D. A. Gorin, P. Fernandes, et al., Advanced Functional Materials 10, 1189 (2010).

    Article  Google Scholar 

  41. A. M. Yashchenok, D. N. Bratashov, D. A. Gorin, et al., Advanced Functional Materials 20, 3136 (2010).

    Article  Google Scholar 

  42. A. M. Yashchenok, D. A. Gorin, M. Badylevich, et al., Phys. Chem. Chem. Phys. 12, 10469 (2010).

    Article  Google Scholar 

  43. S. Westgate, A. M. Vaidya, G. Bell, and G. Halling, Enzyme Microb. Technol. 22, 575 (1998).

    Article  Google Scholar 

  44. M. E. Bobreshova, G. B. Sukhorukov, E. A. Saburova, et al., Biofizika 44, 813 (1999).

    Google Scholar 

  45. G. B. Sukhorukov, M. M. Montrel, A. I. Petrov, et al., Biosens. Bioelectron. 11, 913 (1996).

    Article  Google Scholar 

  46. A. A. Dementiev, A. A. Baikov, V. V. Ptushenko, et al., Biochim. Biophys. Acta 1712, 9 (2005).

    Article  Google Scholar 

  47. A. A. Dement’ev, A. A. Rakhnyanskaya, and G. B. Khomutov, Ros. Khim. Zh. 51, 136 (2007).

    Google Scholar 

  48. F. Vacha, M. Vacha, L. Bumbra, et al., Photosynthetica 38, 493 (2000).

    Article  Google Scholar 

  49. J. F. Allen and J. F. Forsberg, Trends Plant Sci. 6, 317 (2001).

    Article  Google Scholar 

  50. F. Caruso, E. Donath, and H. Mohwald, J. Phys. Chem. B 102, 2011 (1998).

    Article  Google Scholar 

  51. E. Donath, G. B. Sukhorukov, F. Caruso, et al., Angew. Chem., Int. Ed. 37, 2201 (1998).

    Article  Google Scholar 

  52. G. B. Sukhorukov, M. Brumen, E. Donath, and H. Mohwald, J. Phys. Chem. B 103, 6434 (1999).

    Article  Google Scholar 

  53. F. Caruso, W. Yang, D. Trau, and R. Renneberg, Langmuir 16, 8932 (2000).

    Article  Google Scholar 

  54. S. Westgate, A. M. Vaidya, G. Bell, and P. G. Halling, Enzyme Microb. Technol. 22, 575 (1998).

    Article  Google Scholar 

  55. R. Rouillon, R. Sole, R. Carpentier, and J.-L. Marty, Sens. Actuators 26–27, 477 (1995).

    Google Scholar 

  56. R. Rouillon, J.-J. Mestres, and J.-L. Marty, Anal. Chim. Acta 311, 437 (1995).

    Article  Google Scholar 

  57. E. V. Piletskaya, S. A. Piletsky, T. A. Sergeyeva, et al., Anal. Chim. Acta 391, 1 (1999).

    Article  Google Scholar 

  58. M. T. Giardi, M. Kobilizck, and J. Masojidck, Biosens. Bioelectron. 16, 1027 (2001).

    Article  Google Scholar 

  59. A. A. Yaroslavov, E. G. Yaroslavova, A. A. Rakhnyanskaya, et al., Colloids and Surfaces B: Biointerfaces 16, 29 (1999).

    Article  Google Scholar 

  60. A. A. Yaroslavov, V. Ye. Koulkov, E. G. Yaroslavova, et al., Langmuir 14, 5999 (1998).

    Article  Google Scholar 

  61. A. N. Tikhonov, G. B. Khomutov, and E. K. Ruge, Mol. Biol. 14, 1065 (1980).

    Google Scholar 

  62. C. Bouraa, P. Menub, E. Payanc, et al., Biomaterials 24, 3521 (2003).

    Article  Google Scholar 

  63. A. Diaspro, D. Silvano, S. Krol, et al., Langmuir 18, 5047 (2002).

    Article  Google Scholar 

  64. A. A. Dement’ev, A. Yu. Semenov, A. N. Tikhonov, and G. B. Khomutov, Patent RU 2326898 (2008).

  65. G. B. Khomutov, Patent RU 2364472 (2009).

  66. G. B. Khomutov, S. N. Polyakov, V. V. Volkov, et al., Ros. Nanotekhnol. 3(5–6), 13 (2008).

    Google Scholar 

  67. G. B. Khomutov, in: Nanomaterials for Application in Medicine and Biology, Ed. by M. Giersig and G.B. Khomutov (Springer, Dordrecht, The Netherlands, 2008), p. 39.

    Chapter  Google Scholar 

  68. G. B. Khomutov and Yu. A. Koksharov, in Magnetic-Nanoparticles, Ed. by S.P. Gubin (WILEY-VCH, Weinheim, 2009).

    Google Scholar 

  69. G. B. Khomutov, Yu. A. Koksharov, V. V. Kislov, I. V. Taranov, Patent PCT WO/2008/105681 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Khomutov.

Additional information

Original Russian Text © G.B. Khomutov, 2011, published in Biofizika, 2011, Vol. 56, No. 5, pp. 881–898.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khomutov, G.B. Biomimetic nanosystems and novel composite nanobiomaterials. BIOPHYSICS 56, 843–857 (2011). https://doi.org/10.1134/S0006350911050083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911050083

Keywords

Navigation