Skip to main content
Log in

Functioning of macromolecular complexes at successive stages of gene expression as self-coordinated molecular machines

  • Nanotechnologies in Vivo
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The results of systematic investigations devoted to the role of Drosophila melanogaster proteins SAYP and ENY2 in the regulation of different stages of gene expression are presented. Gene expression is a system of multistage processes involving preparation of the chromatin matrix, initiation of transcription, mRNA synthesis, as well as formation of mRNP particles, their export, and translation in the cytoplasm. Each of these stages involves a great number of factors presented usually by protein complexes consisting of different subunits. Analysis of the available evidence indicates that the transcription coactivators SAYP and ENY2 act in gene expression as cooperative nanoregulators, thereby determining the molecular mechanisms of coordination of the spatial and temporal characteristics of the processes implementing the genetic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Brickner and P. Walter, PLoS Biol. 2(11), e342 (2004).

    Article  Google Scholar 

  2. G. G. Cabal, A. Genovesio, S. Rodriguez-Navarro, et al., Nature 441(7094), 770 (2006).

    Article  ADS  Google Scholar 

  3. J. M. Casolari, C. R. Brown, S. Komili, et al., Cell 117(4), 427 (2004).

    Article  Google Scholar 

  4. M. Gaszner and G. Felsenfeld, Nat. Rev. Genet. 7(9), 703 (2006).

    Article  Google Scholar 

  5. H. A. Wallace, M. P. Plata, H. J. Kang, et al., Chromosoma 119(2), 177 (2010).

    Article  Google Scholar 

  6. D. J. Taatjes, M. T. Marr, and R. Tjian, Nat. Rev. Mol. Cell Biol. 5(5), 403 (2004).

    Article  Google Scholar 

  7. A. M. Naar, B. D. Lemon, and R. Tjian, Annu. Rev. Biochem. 70, 475 (2001).

    Article  Google Scholar 

  8. B. Lemon and R. Tjian, Genes Dev. 14(20), 2551 (2000).

    Article  Google Scholar 

  9. K. E. Neely and J. L. Workman, Biochim. Biophys. Acta 1603(1), 19 (2002).

    Google Scholar 

  10. L. Mohrmann and C. P. Verrijzer, Biochim. Biophys. Acta 1681(2–3), 59 (2005).

    Google Scholar 

  11. S. P. Baker and P. A. Grant, Oncogene 26(37), 5329 (2007).

    Article  Google Scholar 

  12. E. Koutelou, C. L. Hirsch, and S. Y. Dent, Curr. Opin. Cell Biol. 22(3), 374 (2010).

    Article  Google Scholar 

  13. S. Rodriguez-Navarro, EMBO Rep. 10(8), 843 (2009).

    Article  Google Scholar 

  14. B. D. Dynlacht, T. Hoey, and R. Tjian, Cell 66(3), 563 (1991).

    Article  Google Scholar 

  15. S. Jimeno and A. Aguilera, J. Biol. 9(1), 6 (2010).

    Article  Google Scholar 

  16. R. Luna, H. Gaillard, C. Gonzalez-Aguilera, and A. Aguilera, Chromosoma 117(4), 319 (2008).

    Article  Google Scholar 

  17. J. Rehwinkel, A. Herold, K. Gari, et al., Nat. Struct. Mol. Biol. 11(6), 558 (2004).

    Article  Google Scholar 

  18. P. Bjork and L. Wieslander, Chromosoma 120(1), 23 (2011).

    Article  Google Scholar 

  19. A. Kohler and E. Hurt, Nat. Rev. Mol. Cell. Biol. 8(10), 761 (2007).

    Article  Google Scholar 

  20. M. Stewart, Trends Biochem Sci. 35(11), 609 (2010).

    Article  Google Scholar 

  21. P. G. Georgiev and T. I. Gerasimova, Genetika 25(8), 1409 (1989).

    Google Scholar 

  22. A. Soldatov, E. Nabirochkina, S. Georgieva, et al., Mol. Cell Biol. 19(5), 3769 (1999).

    Google Scholar 

  23. Y. V. Shidlovskii, A. N. Krasnov, J. N. Nikolenko, et al., EMBO J. 24(1), 97 (2005).

    Article  Google Scholar 

  24. G. E. Chalkley, Y. M. Moshkin, K. Langenberg, et al., Mol. Cell. Biol. 28(9), 2920 (2008).

    Article  Google Scholar 

  25. B. Y. Lu, P. C. Emtage, B. J. Duyf, et al., Genetics 155(2), 699 (2000).

    Google Scholar 

  26. L. Aravind and D. Landsman, Nucl. Acids Res. 26(19), 4413 (1998).

    Article  Google Scholar 

  27. C. A. Musselman and T. G. Kutateladze, Mol. Interventions 9(6), 314 (2009).

    Article  Google Scholar 

  28. R. Sanchez and M. M. Zhou, Trends Biochem. Sci. 36(7), 364 (2011).

    Google Scholar 

  29. S. S. Banga, L. Peng, T. Dasgupta, et al., Cytogen. Genome Res. 126(3), 227 (2009).

    Article  Google Scholar 

  30. J. Lessard, J. I. Wu, J. A. Ranish, et al., Neuron 55(2), 201 (2007).

    Article  Google Scholar 

  31. M. Wei, B. Liu, L. Su, et al., Mol. Cancer Therap. 9(6), 1764 (2010).

    Article  Google Scholar 

  32. N. E. Vorobyeva, N. V. Soshnikova, J. L. Kuzmina, et al., Cell Cycle 8(14), 2152 (2009).

    Article  Google Scholar 

  33. N. E. Vorobyeva, N. V. Soshnikova, J. V. Nikolenko, et al., Proc. Natl. Acad. Sci. USA 106(27), 11049 (2009).

    Article  ADS  Google Scholar 

  34. J. D. Parvin and R. A. Young, Curr. Opinion Genetics & Development. 8(5), 565 (1998).

    Article  Google Scholar 

  35. T. Nakamura, T. Mori, S. Tada, et al., Mol. Cell 10(5), 1119 (2002).

    Article  Google Scholar 

  36. A. J. Saurin, Z. Shao, H. Erdjument-Bromage, et al., Nature 412(6847), 655 (2001).

    Article  ADS  Google Scholar 

  37. P. Muller, D. Kuttenkeuler, V. Gesellchen, et al., Nature 436(7052), 871 (2005).

    Article  ADS  Google Scholar 

  38. K. Nybakken, S. A. Vokes, T. Y. Lin, et al., Nature Genetics 37(12), 1323 (2005).

    Article  Google Scholar 

  39. N. E. Vorobyeva, J. V. Nikolenko, A. N. Krasnov, et al., Cell Cycle 10(11), 1821 (2011).

    Article  Google Scholar 

  40. S. Georgieva, E. Nabirochkina, F. J. Dilworth, et al., Mol. Cell. Biol. 21(15), 5223 (2001).

    Article  Google Scholar 

  41. S. Rodriguez-Navarro, T. Fischer, M. J. Luo, et al., Cell 116(1), 75 (2004).

    Article  Google Scholar 

  42. P. Pascual-Garcia and S. Rodriguez-Navarro, RNA-Biol. 6(2) (2009).

  43. Y. Zhao, G. Lang, S. Ito, et al., Mol. Cell. 29(1), 92 (2008).

    Article  Google Scholar 

  44. Q. Lu, X. Tang, G. Tian, et al., Plant J. (2009).

  45. A. N. Krasnov, M. M. Kurshakova, V. E. Ramensky, et al., Nucl. Acids Res. 33(20), 6654 (2005).

    Article  Google Scholar 

  46. L. A. Lebedeva, E. N. Nabirochkina, M. M. Kurshakova, et al., Proc. Natl. Acad. Sci. USA 102(50), 18087 (2005).

    Article  ADS  Google Scholar 

  47. I. F. Zhimulev, Adv. Genet. 39, 1 (1999).

    Article  Google Scholar 

  48. D. V. Kopytova, A. V. Orlova, A. N. Krasnov, et al., Genes Dev. (in press).

  49. P. Pascual-Garcia, C. K. Govind, E. Queralt, et al., Genes Dev. 22(20), 2811 (2008).

    Article  Google Scholar 

  50. S. Chavez, T. Beilharz, A. G. Rondon, et al., EMBO J. 19(21), 5824 (2000).

    Article  Google Scholar 

  51. S. Jimeno, A. G. Rondon, R. Luna, and A. Aguilera, EMBO J. 21(13), 3526 (2002).

    Article  Google Scholar 

  52. K. Strasser, S. Masuda, P. Mason, et al., Nature 417(6886), 304 (2002).

    Article  ADS  Google Scholar 

  53. H. Cheng, K. Dufu, C. S. Lee, et al., Cell. 127(7), 1389 (2006).

    Article  Google Scholar 

  54. S. Masuda, R. Das, H. Cheng, et al., Genes Dev. 19(13), 1512 (2005).

    Article  Google Scholar 

  55. J. Rehwinkel, A. Herold, K. Gari, et al., Nat. Struct. Mol. Biol. 11(6), 558 (2004).

    Article  Google Scholar 

  56. C. Saguez, M. Schmid, J. R. Olesen, et al., Mol. Cell. 31(1), 91 (2008).

    Article  Google Scholar 

  57. J. A. Chekanova, K. C. Abruzzi, M. Rosbash, and D. A. Belostotsky, RNA. 14(1), 66 (2008).

    Article  Google Scholar 

  58. C. Gonzalez-Aguilera, C. Tous, B. Gomez-Gonzalez, et al., Mol. Biol. Cell. 19(10), 4310 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Brechalov, D.Ya. Gurskii, S.G. Georgieva, Yu.V. Shidlovskii, 2011, published in Biofizika, 2011, Vol. 56, No. 5, pp. 831–839.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brechalov, A.V., Gurskii, D.Y., Georgieva, S.G. et al. Functioning of macromolecular complexes at successive stages of gene expression as self-coordinated molecular machines. BIOPHYSICS 56, 803–809 (2011). https://doi.org/10.1134/S0006350911050034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911050034

Keywords

Navigation