Skip to main content
Log in

The results of 25 years of cytogenetic investigation of survivors who were exposed to different doses of irradiation during the chernobyl accident

  • Radiobiology and Radioecology
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Using routine methods over 25 years, changes in the registered levels of chromosomal aberrations were studied in the peripheral blood lymphocyte cultures of 74 patients who were irradiated as a result of the Chernobyl accident. The initial dosage estimations by mean dicentric frequency varied from 0.2 to 9.8 Gy. Generally, a double exponential type model was most adequate for the quantitative description of the elimination of cytogenetic indexes associated with different types of unstable chromosomal aberrations. Great individual variability of the elimination rate of chromosomal aberrations and its dependency on the value of the originally estimated dosage were found during the first period. A computer method for retrospective dos-age estimation was developed based on this data. The method is based on analysis of cell distributions in accordance with the number of dicentrics and, as a whole, unstable chromosomal aberrations contained in them. In addition, the dynamics of the translocation frequencies in the peripheral blood lymphocyte cultures of a number of patients from this contingent were investigated, beginning at 10 years after the irradiation using the FISH method of chromosome staining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. B. Kudryashov, Radiation Biophysics (Ionizing Radiation), Ed. by V. K. Mazurik and M. F. Lomanov (Fizmatlit, Moscow, 2004), p. 448 [in Russian].

    Google Scholar 

  2. Analysis Methods of Human Chromosomal aberrations, Ed. by K. Bakton and G. Evans (WHO, Geneva, 1975), p. 64.

    Google Scholar 

  3. D. C. Lloyd and R. G. Purrott, Radiat. Prot. Dos. 1(1), 19 (1981).

    Google Scholar 

  4. Cytogenetic Analysis for Radiation Dose Assessment: A Manual, (IAEA, Technical Reports Series, Vienna, 2001), 405, p. 126.

  5. M. Nakano, Y. Kodama, K. Ohtaki, et al., Int. J. Radiat. Biol. 77(9), 971 (2001).

    Article  Google Scholar 

  6. S. S. Dybskii, “Problems of Radiation Genetics at the Turn of the Century,” in Proceedings of the International Conference, November 20–24, 2000, (Izd. RUDN, Moscow, 2000), p. 270.

    Google Scholar 

  7. A. V. Sevan’kaev, V. V. Moiseenko, and A. F. Tsyb, Rad. Biol. Radioecology, 34(6), 782 (1994).

    Google Scholar 

  8. A. V. Sevan’kaev, V. V. Moiseenko, and A. F. Tsyb, Rad. Biol. Radioecology 34(6), 793 (1994).

    Google Scholar 

  9. M. A. Bender, A. A. Awa, A. L. Brooks, et al., Mutat. Res. 196(2), 103 (1988).

    Google Scholar 

  10. A. A. Awa, Radiation-Induced Chromosome Damage in Man (Alan R. Liss Inc., New York, 1983).

    Google Scholar 

  11. E. K. Pyatkin, V. Yu. Nugis, and A. A. Chirkov, Med. Radiology 34(6), 52 (1989).

    Google Scholar 

  12. E. K. Pyatkin and V. Yu. Nugis, Radiobiology 20(6), 871 (1980).

    Google Scholar 

  13. J. N. Lucas, A. A. Awa, T. Straume, et al., Int. J. Radiat. Biol. 1(1), 53 (1992).

    Article  Google Scholar 

  14. Domestic and Medical Aspects of the Radiological Accident in Goiania in 1987 (IAEA-Tecdoc-1009, Vienna, 1998).

  15. V. Yu. Nugis and N. E. Dudoxhkina, Rad. Biol. Radioecology 46(1), 5(2006).

  16. K. E. Buckton, P. G. Smith, W. M. Court Brown, Human Radiation Cytogenetics, Ed. by H. J. Evans, W. M. Court Brown, A. S. McLean (North-Holland Publ. Comp., Amsterdam, 1967), pp. 106–114.

    Google Scholar 

  17. E. K. Pyatkin and V. Yu. Nugis, Cytology, 23(11), 1310 (1981).

    Google Scholar 

  18. E. K. Pyatkin, V. N. Pokrovskaya, and V. Yu. Nugis, Cytology, 24(11), 1346 (1982).

    Google Scholar 

  19. G. N. Zaitsev, Mathematical Analysis of Biological Data (Nauka, Moscow, 1991), p. 183 [in Russian].

    Google Scholar 

  20. V. Yu. Nugis and A. A. Chirkov, Radiobiology, 30(5), 585 (1990).

    Google Scholar 

  21. A. V. Kolganov, S. V. Filin, A. E. Baranov, et al., Med. Radiology and Rad. Safety 47(2), 34 (2002).

    Google Scholar 

  22. A. V. Sevan’kaev, E. V. Golub, I. K. Khvostunov, et al., Radiat. Prot. Dosim. 44(6), 637 (2004).

    Google Scholar 

  23. A. V. Sevan’kaev, D. C. Lloyd, A. A. Edwards, et al., Radiat. Prot. Dosim. 113(2), 152 (2005).

    Article  Google Scholar 

  24. I. V. Filushkin, V. Yu. Nugis, and A. S. Chistopol’skii, Atom. Energy 79(4), 285 (1995).

    Google Scholar 

  25. E. K. Pyatkin, I. V. Filushkin, and V. Yu. Nugis, Terr. Arch. 58(9), 30 (1986).

    Google Scholar 

  26. V. Yu. Nugis and N. E. Dudochkina, Rad. Biol. Radioecology 47(1), 74 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Nugis.

Additional information

Original Russian Text © V.Yu. Nugis, A.V. Sevan’kaev, I.K. Khvostunov, E.V. Golub, N.M. Nadejina, I.A. Galstyan, N.E. Dubochkina, M.G. Kozlova, 2011, published in Radiatsionnaya Biologiya. Radioekologiya, 2011, Vol. 51, No. 1, pp. 81–90.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nugis, V.Y., Sevan’kaev, A.V., Khvostunov, I.K. et al. The results of 25 years of cytogenetic investigation of survivors who were exposed to different doses of irradiation during the chernobyl accident. BIOPHYSICS 56, 537–545 (2011). https://doi.org/10.1134/S0006350911030195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911030195

Keywords

Navigation