Skip to main content
Log in

A model of photosystem II for the analysis of fast fluorescence rise in plant leaves

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The polyphasic patterns of fluorescence induction rise in pea leaves in vivo and after the treatment with ionophores have been studied using a Plant Efficiency Analyzer. To analyze in detail photosystem II (PS II) electron transfer processes, an extended PS II model was applied, which included the sums of exponential functions to specify explicitly the light-driven formation of the transmembrane electric potential (ΔΨ(t)) as well as pH in the lumen (pHL(t)) and stroma (pHS(t)). PS II model parameters and numerical coefficients in ΔΨ(t), pHL(t), and pHS(t) were evaluated to fit fluorescence induction data for different experimental conditions: leaf in vivo or after ionophore treatment at low or high light intensity. The model imitated changes in the pattern of fluorescence induction rise due to the elimination of transmembrane potential in the presence of ionophores, when ΔΨ = 0 and pHL(t), pHS(t) changed to small extent relative to control values in vivo, with maximum ΔΨ(t) ∼ 90 mV and ΔΨ(t) ∼ 40 mV for the stationary state at ΔpH ≅ 1.8. As the light intensity was increased from 300 to 1200 μmol m−2 s−1, the heat dissipation rate constants increased threefold for nonradiative recombination of P680+Phe and by ∼30% for P680+Q A . The parameters ΔΨ, pHS and pHL were analyzed as factors of PS II redox state populations and fluorescence yield. The kinetic mechanism of fluorescence quenching is discussed, which is related with light-induced lumen acidification, when +Q A and P680+ recombination probability increases to regulate the QA reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Advances in Photosynthesis and Respiration, vol. 29; Photosynthesis in silico, Ed. by A. Laisk, L. Nedbal and Govindjee (Springer, the Netherlands, 2009).

    Google Scholar 

  2. R. van Grondelle, Biochim. Biophys. Acta 811, 147 (1985).

    Google Scholar 

  3. G. H. Schatz, H. Brock, and A. R. Holzwarth, Biophysical J. 54, 397 (1988).

    Article  ADS  Google Scholar 

  4. W. Leibl, J. Breton, J. Deprez, and H. W. Trissl, Photosynth. Res. 22, 257 (1989).

    Article  Google Scholar 

  5. T. A. Roelofs, C. H. Lee, and A. R. Holzwarth, Biophysical J. 61, 1147 (1992).

    Article  ADS  Google Scholar 

  6. J. Lavergne and H. W. Trissl, Biophysical J. 68, 2474 (1995).

    Article  ADS  Google Scholar 

  7. G. Renger, H. J. Eckert, A. Bergmann, et al., Aust. J. Plant Physiol. 22, 167 (1995).

    Article  Google Scholar 

  8. U. Schreiber and A. Krieger, FEBS Lett. 397, 131 (1996).

    Article  Google Scholar 

  9. K. Gibasiewicz, A. Dobek, J. Breton, and W. Leibl, Biophysical J. 80, 1617 (2001).

    Article  ADS  Google Scholar 

  10. O. van Kooten, J. F.H. Snel, and W. J. Vredenberg, Photosynth. Res. 9, 211 (1986).

    Article  Google Scholar 

  11. A. A. Bulychev, M. M. Niyazova, and A. B. Rubin, Biologicheskie Membrany 4, 262 (1987).

    Google Scholar 

  12. A. A. Bulychev and W. J. Vredenberg, Physiologia plantarum 105, 577 (1999).

    Article  Google Scholar 

  13. A. A. Bulychev and W. J. Vredenberg, Bioelectrochemistry 54, 157 (2001).

    Article  Google Scholar 

  14. H. Dau, R. Windecker, and U. P. Hansen, Biochim. Biophys. Acta 1057, 337 (1991).

    Article  Google Scholar 

  15. H. Dau and K. Sauer, Biochim. Biophys. Acta 1098, 49 (1991).

    Article  Google Scholar 

  16. G. V. Lebedeva, N. E. Belyaeva, O. V. Demin, et al., Biofizika 47(6), 1044 (2002).

    Google Scholar 

  17. N. E. Belyaeva, G. V. Lebedeva, and G. Yu. Riznichenko, in Mathematics. Computer. Education 10, Ed. by G. Yu. Riznichenko (Moscow — Izhevsk, 2003), pp. 263–276 [in Russian].

  18. N. E. Belyaeva, Candidate’s Dissertation in Physics & Math. (MGU, Moscow, 2004).

    Google Scholar 

  19. W. J. Vredenberg and A. A. Bulychev, Bioelectrochemistry 60, 87 (2003).

    Article  Google Scholar 

  20. U. Schreiber and Ch. Neubauer, Photosynth. Res. 25, 279 (1990).

    Article  Google Scholar 

  21. P. Horton and A. V. Ruban, Photosynth. Res. 34: 375 (1992).

    Article  Google Scholar 

  22. D. Rees, G. Noctor, A. V. Ruban, et al., Photosynth. Res. 31, 11 (1992).

    Article  Google Scholar 

  23. D. Rees, P. Horton, and U. Schreiber, Photosynth. Res. 37, 131 (1993).

    Article  Google Scholar 

  24. D. M. Kramer, C. A. Sacksteder, and J. A. Cruz, Photosynth. Res. 60, 151 (1999).

    Article  Google Scholar 

  25. A. Krieger, I. Moya, and E. Weis, Biochim. Biophys. Acta 1102(2), 167 (1992).

    Article  Google Scholar 

  26. D. Bruce, G. Samson, and Ch. Carpenter, Biochemistry 36(4), 749 (1997).

    Article  Google Scholar 

  27. R. J. Strasser, A. Srivastava, and Govindgee, Photochem. Photobiol. 61, 32 (1995).

    Article  Google Scholar 

  28. R. J. Strasser, M. Tsimilli-Michael, and A. Srivastava, in Chlorophyll Fluorescence: A Signature of Photosynthesis, Ed. by G. C. Papageorgiou and Govindjee (Kluwer Academic Publishers, the Netherlands, 2004), vol. 19, pp. 321–362.

    Google Scholar 

  29. G. Renger and A. Schulze, Photobiochem. and Photobiophys. 9, 79 (1985).

    Google Scholar 

  30. E. Baake and J. P. Shloeder, Bull. Math. Biol. 54, 999 (1992).

    MATH  Google Scholar 

  31. A. Stirbet, Govindjee, B. J. Strasser, and R. J. Strasser, J. Theor. Biol. 193, 131 (1998).

    Article  Google Scholar 

  32. W. J. Vredenberg, Biophysical J. 79, 26 (2000).

    Article  ADS  Google Scholar 

  33. D. Lazar, J. Theor. Biol. 220, 469 (2003).

    Article  Google Scholar 

  34. X. G. Zhu, Govindjee, N. R. Baker, et al., Planta 223, 114 (2005).

    Article  Google Scholar 

  35. G. Yu. Riznichenko, G. V. Lebedeva, O. V. Demin, and A. B. Rubin, J. Biol. Physics 25, 177 (1999).

    Article  Google Scholar 

  36. G. V. Lebedeva, N. E. Belyaeva, G. Yu. Riznichenko, et al., Russ. J. of Phys. Chem. 74, 1702 (2000).

    Google Scholar 

  37. N. E. Belyaeva, V. Z. Pashchenko, G. Renger, et al., Biophysics 51, 860 (2006).

    Article  Google Scholar 

  38. N. E. Belyaeva, F-J. Schmitt, R. Steffen, et al., Photosynth. Res. 98, 105 (2008).

    Article  Google Scholar 

  39. R. Steffen, H. J. Eckert, A. A. Kelly, et al., Biochemistry 44, 3123 (2005).

    Article  Google Scholar 

  40. J. A. Cruz, C. A. Sacksteder, A. Kanazawa, and D. M. Kramer, Biochemistry, 40, 1226 (2001).

    Article  Google Scholar 

  41. A. Laisk and D. A. Walker, Proc. R. Soc. London B237, 417 (1989).

    Article  ADS  Google Scholar 

  42. G. Renger. Biochim. Biophys. Acta 1503, 210 (2001).

    Article  Google Scholar 

  43. G. Renger and A. R. Holzwarth, in: Photosystem II: The Light Driven Water-Plastoquinone Oxidoreductase in Photosynth, Ed. by T. Wydrzynski and K. Satoh (Springer, the Netherlands, 2005), pp. 139–175.

    Google Scholar 

  44. J. Kern and G. Renger, Photosynth. Res. 94, 183 (2007).

    Article  Google Scholar 

  45. I. A. Reynolds, E. A. Johnson, and C. Tanford, Proc. Natl. Acad. Sc. USA 82, 6869 (1985).

    Article  ADS  Google Scholar 

  46. P. D. Laible, W. Zipfel, and T. G. Owens, Biophysical J. 66, 844 (1994).

    Article  ADS  Google Scholar 

  47. Photosynthesis, Ed. by Govindjee (Academic Press, New York, 1982), vol. 2.

    Google Scholar 

  48. A. B. Hope, R. R. Huilgol, M. Panizza, et al., Biochim. Biophys. Acta 1100,15 (1992).

    Article  Google Scholar 

  49. J. Kurreck, R. Schodel, and G. Renger, Photosynth. Res. 63, 171 (2000).

    Article  Google Scholar 

  50. S. Z. Toth, G. Schansker, and R. J. Strasser, Biochim. Biophys. Acta 1708, 275 (2005).

    Article  Google Scholar 

  51. N. Gizzatkulov, A. Klimov, G. Lebedeva, and O. Demin, in ISMB/ECCB conference (Glasgow, Scotland, UK, 2004). http://www.insysbio.ru

    Google Scholar 

  52. A. R. Crofts and C. A. Wraight, Biochim. Biophys. Acta 726, 149 (1983).

    Google Scholar 

  53. C-H. Goh, U. Schreiber, and R. Hedrich, Plant Cell and Environment 22, 1057 (1999).

    Article  Google Scholar 

  54. A. Laisk, H. Eichelmann, and V. Oja, Photosynth. Res. 90, 45 (2006).

    Article  Google Scholar 

  55. O. van Kooten and J. F. H. Snel, Photosynth. Res. 25, 147 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Belyaeva.

Additional information

Original Russian Text © N.E. Belyaeva, A.A. Bulychev, G.Yu. Riznichenko, A.B. Rubin, 2011, published in Biofizika, 2011, Vol. 56, No. 3, pp. 489–505.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belyaeva, N.E., Bulychev, A.A., Riznichenko, G.Y. et al. A model of photosystem II for the analysis of fast fluorescence rise in plant leaves. BIOPHYSICS 56, 464–477 (2011). https://doi.org/10.1134/S0006350911030055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350911030055

Keywords

Navigation