Skip to main content
Log in

The consideration of biological effectiveness of low energy protons using biophysical modeling of the effects induced by exposure of V79 cells

  • Radiobiology and Radioecology
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

We have applied Monte Carlo track structure simulations to estimate relative biological effectiveness (RBE) of low-energy protons using biophysical modelling of radiation effects induced by exposure of V79 cells growing in mono-layer. The microscopic energy deposition in cell nucleus and sub-nucleus volumes was investigated in order to understand the reasons of enhanced biological effectiveness near Bragg peak. Theoretical estimations of RBE based on frequency/dose average lineal energy and calculated yields of initial DNA breaks were collated with experimental RBEM data. It was found: (1) dose average lineal energy for whole cell nucleus as a function of proton energy shows a distinct peak at 550 keV; (2) the peak values for subnucleus volumes are large compared with the whole cell nucleus; (3) the yield of complex DNA breaks correlates with experimental RBEM data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Robertson, J. R. Williams, R. A. Schmidt, et al., Cancer. 35(6), 1664–1677 (1975).

    Article  Google Scholar 

  2. NCRP Report 104, “The Relative Biological Effectiveness of Radiation of Different Quality,” in Proceedings of the National Council on Radiation Protection and Measurements (NCRP, Bethesda, Maryland, 1990), Issued No. 15.

  3. C. R. Geard, Health Phys. 70,No. 6, 804–811 (1996).

    Article  Google Scholar 

  4. M. R. Raju, Int. J. Radiat. Biol. 67(3), 237–259 (1995).

    Article  Google Scholar 

  5. ICRU Report 40, “The Quality Factor in Radiation Protection,” in Proceedings of the International Commission on Radiation Units and Measurements (ICRU, Bethesda, Maryland, 1986), issue 4.

  6. ICRP Publication 92, Relative Biological Effectiveness (RBE), Quality Factor (Q), and Radiation Weighting Factor (w R ) (Pergamon Press, Oxford, 2003), Ann. 33, No. 4.

  7. ICRP Publication 60, Recommendations of the International Commission on Radiation Protection (Pergamon Press, N.Y., 1991), Ann. 21 (1–3).

  8. J. T. Lett, Radiat. Environ. Biophys. 31(4), 257–277 (1992).

    Article  Google Scholar 

  9. J. F. Ward, Radiat. Res. 142(3), 362–368 (1995).

    Article  Google Scholar 

  10. A. Ottolenghi, F. Monforti, and M. Merzagora, Int. J. Radiat. Biol. 72(5), 505–513 (1997).

    Article  Google Scholar 

  11. S. Uehara, L. H. Toburen, and H. Nikjoo, Int. J. Radiat. Biol. 77(2), 139–154 (2001).

    Article  Google Scholar 

  12. H. Nikjoo, P. O’Neil, M. Terrisol, and D. T. Goodhead, Radiat. Environ. Biophys. 38(1), 31–38 (1999).

    Article  Google Scholar 

  13. W. E. Wilson, J. H. Miller, and H. Nikjoo, in Computational Approach in Molecular Radiation Biology, Eds. by M. N. Varma and A. Chatterjee (Plenum Press, N.Y., 1994), pp. 137–154.

    Google Scholar 

  14. H. Nikjoo, S. Uehara, W. E. Wilson, et al., Int. J. Radiat. Biol. 73(4), 355–364 (1998).

    Article  Google Scholar 

  15. H. Nikjoo, S. Uehara, I. K. Khvostunov, et al., Phys. Med. 17(Suppl. 1), 38–44 (2001).

    Google Scholar 

  16. M. Folkard, K. M. Prise, B. Vojnovic, et al., Int. J. Radiat. Biol. 56(3), 221–237 (1989).

    Article  Google Scholar 

  17. M. Folkard, K. M. Prise, B. Vojnovic, et al., Int. J. Radiat. Biol. 69(6), 729–738 (1996).

    Article  Google Scholar 

  18. A. Perris, P. Pialoglou, A. A. Katsanos, and E. G. Sideris, Int. J. Radiat. Biol. 50(6), 1093–1101 (1986).

    Article  Google Scholar 

  19. M. Belli, R. Cherubini, S. Finotto, et al., Int. J. Radiat. Biol. 55(1), 93–104 (1989).

    Article  Google Scholar 

  20. M. Belli, F. Cera, R. Cherubini, et al., Int. J. Radiat. Biol. 63(3), 331–337 (1993).

    Article  Google Scholar 

  21. R. Datta, A. Cole, and S. Robinson, Radiat. Res. 65(1), 139–151 (1976).

    Article  Google Scholar 

  22. K. M. Townsend and S. J. Marsden, Int. J. Radiat. Biol. 61(4), 549–551 (1992).

    Article  Google Scholar 

  23. ICRU Report 36, “Microdosimetry,” in Proceedings of the International Commission on Radiation Units and Measurements (ICRU, Bethesda, Maryland, 1983), issue 4.

  24. A. Ottolenghi, F. Monforti, and M. Merzagora, Int. J. Radiat. Biol. 72(5), 505–513 (1997).

    Article  Google Scholar 

  25. G. Taucher-Scholz, J. A. Stanton, M. Schneider, and G. Kraft, Adv. Space Res. 12(2–3), 273–280 (1992).

    Google Scholar 

  26. D. E. Watt, Reference Book (Taylor and Francis Ltd., 1. 1996 Gunpowder Square, London EC4A 3DE, 1996).

  27. J. F. Ward, Radiat. Res. 104 (Suppl.), S103–S111 (1985).

    Article  Google Scholar 

  28. D. T. Goodhead, Int. J. Radiat. Biol. 65(1), 7–17 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Khvostunov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khvostunov, I.K., Nikjoo, H., Uehara, S. et al. The consideration of biological effectiveness of low energy protons using biophysical modeling of the effects induced by exposure of V79 cells. BIOPHYSICS 55, 1067–1075 (2010). https://doi.org/10.1134/S0006350910060321

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060321

Keywords

Navigation