Skip to main content
Log in

Mechanoelectric potentials in synthetic hydrogels: Possible relation to cytoskeleton

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Mechanical and electrical properties of a synthetic polyelectrolyte hydrogel considered as a model of the cytoskeletal gel were studied. Hydrogels were synthesized from polymethacrylic acid by radical polymerization in aqueous solution. The electrical charge was introduced into the gel network by partial neutralization of monomer acids with magnesium hydroxide. Through the use of a motor, triangular longitudinal (axial) deformations were applied to gel samples. Simultaneously, the electrochemical (Donnan) potential of the gel was measured using conventional microelectrodes. We found that: (1) the Young modulus of the gel is 0.53 kPa; (2) at a given deformation velocity, the extent of gel deformation closely correlates with the gel potential; and (3) at the same level of gel deformation, the lower the deformation velocity, the higher the relative change of gel potential. These findings show a striking similarity to the data obtained in living cells, particularly in cardiac myocytes. A hypothesis involving the deformation-induced solvent migration from the gel to the surrounding solution is considered. It is concluded that the physicochemical features of the cytoskeletal gel may play a role in determining the mechanoelectric properties of excited cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Lab, Cardiovasc. Res. 32(1), 3 (1996).

    Google Scholar 

  2. P. Taggart, Cardiovasc. Res. 32(1), 38 (1996).

    Google Scholar 

  3. P. Taggart and M. Lab, Prog. Biophys. Mol. Biol. 97(2–3), 452 (2008).

    Article  Google Scholar 

  4. M. R. Franz, Cardiovasc Res. 45(2), 263 (2000).

    Article  Google Scholar 

  5. M. R. Franz, Am. J. Physiol. Heart Circ. Physiol. 278(2), 548 (2000).

    Google Scholar 

  6. A. Kamkin, I. Kiseleva, G. Isenberg, et al., Prog. Biophys. Mol. Biol. 82(1–3), 111 (2003).

    Article  Google Scholar 

  7. U. Ravens, Prog. Biophys. Mol. Biol. 82(1–3), 255 (2003).

    Article  Google Scholar 

  8. J. I. Vandenberg, G. C. Bett, and T. Powell, Am. J. Physiol. 273(2), 541 (1997).

    Google Scholar 

  9. G. Isebberg, D. Kondratev, V. Dyachenko, et al., in Mechanosensitivity in Cells and Tissues, Ed. by A. Kamkin and I. Kiseleva (Academia, Moscow, 2005), pp. 126–164.

    Google Scholar 

  10. H. Zou, L. M. Lifshitz, R. A. Tuft, et al., Proc. Natl. Acad. Sci. USA 99(9), 6404 (2002).

    Article  ADS  Google Scholar 

  11. M. T. Kirber, A. Guerrero-Hernandez, D. S. Bowman, et al., J. Physiol. 524(1), 3 (2000).

    Article  Google Scholar 

  12. N. Sasaki, T. Mitsuiye, and A. Noma, Japanese J. Physiology 42, 957 (1992).

    Article  Google Scholar 

  13. A. Ruknudin, F. Sachs, and J. O. Bustamante, Am. J. Physiol. 264(3), 960 (1993).

    Google Scholar 

  14. T. Zeng, G. C. Bett, and F. Sachs, Am. J. Physiol. Heart Circ. Physiol. 278(2), 548 (2000).

    Google Scholar 

  15. S. Nishimura, K. Seob, M. Nagasakia, et al., Prog. Biophys. Mol. Biol. 97(2–3), 282 (2008).

    Article  Google Scholar 

  16. O. P. Hamill and B. Martinac, Physiol. Rev. 81, 685 (2001).

    Google Scholar 

  17. F. Sachs, Soc. Gen. Physiol. Ser. 52, 209 (1997).

    Google Scholar 

  18. F. Sachs and C. E. Morris, Rev. Physiol. Biochem. Pharmacol. 132, 1 (1998).

    Article  Google Scholar 

  19. J. W. Mills, E. M. Schwiebert, and B. A. Stanton, Curr. Opin. Nephrol. Hypertens. 3(5), 529 (1994).

    Article  Google Scholar 

  20. D. J. Dick and M. J. Lab, Cardiovasc. Res. 38(1), 181 (1998).

    Article  ADS  Google Scholar 

  21. H. F. Cantiello, J. Exp. Zool. 279(5), 425 (1997).

    Article  Google Scholar 

  22. S. Fais, F. Luciani, M. Logozzi, et al., Histol Histopathol. 15(2), 539 (2000).

    Google Scholar 

  23. G. T. Charras, B. A. Williams, S. M. Sims, and M. A. Horton, Biophysical J. 87, 2870 (2004).

    Article  ADS  Google Scholar 

  24. N. Wang, Proc. Nat. Acad. Sci. USA 98, 7765 (2001).

    Article  ADS  Google Scholar 

  25. P. Matsudaira, Trends Biochem. Sci. 16(3), 87 (1991).

    Article  Google Scholar 

  26. R. R. Weihing, Can. J. Biochem. Cell Biol. 63(6), 397 (1985).

    Google Scholar 

  27. K. H. Wrighton, Nat. Rev. Mol. Cell Biology 10, 304 (2009).

    Article  Google Scholar 

  28. Responsive Gels. B.: Springer-Verlag, 109, 275 (1993).

  29. R. S. Harland and R. K. Prud’homme, Polyelectrolyte Gels: Properties, Preparation and Applications (American Chemical Society. Washington, DC, 1992).

    Book  Google Scholar 

  30. A. P. Safronov, T. F. Shklyar, V. S. Borodin, et al., in Water in Biology, Ed. by. G. Pollack, I. Cameron, D. Wheatley (Springer, NW, 2006), pp. 273–284.

  31. A. Gao, A. Reitz, and G. H. Pollack, J. Appl. Polym. Sci. 89, 1319 (2003).

    Article  Google Scholar 

  32. T. F. Shklyar, A. P. Safronov, I. S. Klyuzhin, et al., Biofizika 53, 1000 (2008).

    Google Scholar 

  33. Y. Bar-Coher, in Electroactive Polymer Actuators as Artificial Muscles: Reality, Potential and Challenges (Bellingham, SPIE Press, 2004), pp. 348–351.

  34. S. Vervoort, S. Patlazhan, J. Weyts, and T. Budtova, Polymer. 46, 121 (2005).

    Article  Google Scholar 

  35. J. M. Zheng, W. C. Chin, E. Khijniak, et al., Adv. Colloid Interface Sci. 127, 19 (2006).

    Article  Google Scholar 

  36. J. M. Zheng, A. Wexler, and G. H. Pollack, J. Colloid Interface Sci. 332, 511 (2009).

    Article  Google Scholar 

  37. Y. Osada and A. R. Khokhlov, in Polymer Gels and Networks (Marcel Dekker, Inc., New York, 2002), pp. 177–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. F. Shklyar.

Additional information

Original Russian Text © T.F. Shklyar, A.P. Safronov, O.A. Toropova, G.H. Pollack, F.A. Blyakhman, 2010, published in Biofizika, 2010, Vol. 55, No. 6, pp. 1014–1021.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shklyar, T.F., Safronov, A.P., Toropova, O.A. et al. Mechanoelectric potentials in synthetic hydrogels: Possible relation to cytoskeleton. BIOPHYSICS 55, 931–936 (2010). https://doi.org/10.1134/S0006350910060084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060084

Keywords

Navigation