Skip to main content
Log in

The GC skew near Pol II start sites and its association with SP1-binding site variants

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Nucleotide sequences of DNA within clusters of transcription start sites identified by the Cap Analysis of Gene Expression (CAGE) have some distinctive features. DNA within such clusters is enriched in cytosine and guanine, and its GC-skew agrees with selection of the coding strand for which the G content exceeds the C content. On the other hand, for the coding strand the frequency of tracts of the avoided cytosine, normalized to the expectation calculated from the local content of the nucleotide in the cluster, is significantly higher than that of the tracts of the preferred guanine. Similarly, the statistical significance of the C-rich variant of binding site for transcription factor Sp1 in the coding strand is higher than that of the G-rich variant. Yet it is unlikely that the choice of the Sp1 site variant is induced by the coding strand selection. Rather, it is more likely that both variants are more or less equiprobable, and the Sp1 functional binding works as a selection factor, which counteracts the mutations bringing about the GC-skew.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Shiraki, et al., Proc. Natl. Acad. Sci. U S A 100, 15776 (2003).

    Article  ADS  Google Scholar 

  2. R. Kodzius, et al., Nat. Methods 3, 211 (2006).

    Article  Google Scholar 

  3. H. Kawaji, et al., Nucleic Acids Res. 34, D632 (2006).

    Article  Google Scholar 

  4. J. C. Reese, Curr. Opin. Genet. Dev. 13, 114 (2003).

    Article  Google Scholar 

  5. A. Shilatifard, R. C. Conaway and J. W. Conaway, Annu. Rev. Biochem. 72, 693 (2003).

    Article  Google Scholar 

  6. S. Saxonov, P. Berg and D. L. Brutlag, Proc. Natl. Acad. Sci. U S A 103, 1412 (2006).

    Article  ADS  Google Scholar 

  7. B. F. Pugh and R. Tjian, Genes Dev. 5, 1935 (1991).

    Article  Google Scholar 

  8. L. Weis and D. Reinberg, Mol. Cell. Biol. 17, 2973 (1997).

    Google Scholar 

  9. Y. A. Medvedeva, et al., BMC Genomics 11, 48 (2010).

    Article  Google Scholar 

  10. I. A. Mastrangelo, et al., Proc. Natl. Acad. Sci. U S A 88, 5670 (1991).

    Article  ADS  Google Scholar 

  11. S. Aerts, et al., BMC Genomics 5, 34 (2004).

    Article  Google Scholar 

  12. T. Tatarinova, V. Brover, M. Troukhan and N. Alexandrov, Bioinformatics 19Suppl 1, i313 (2003).

    Article  Google Scholar 

  13. S. Fujimori, T. Washio and M. Tomita, BMC Genomics 6, 26 (2005).

    Article  Google Scholar 

  14. C. Van Lint, et al., J. Virol. 71, 6113 (1997).

    Google Scholar 

  15. L. Weis and D. Reinberg, FASEB J. 6, 3300 (1992).

    Google Scholar 

  16. M. Touchon, et al., FEBS Lett. 555, 579 (2003).

    Article  Google Scholar 

  17. P. Polak and P. F. Arndt, Genome Res 18, (2008).

  18. J. S. Liu and C. E. Lawrence, Bioinformatics 15, 38 (1999).

    Article  Google Scholar 

  19. Rozanov, Probability Theory, Random Processes, Mathematical Statistics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  20. V. Matys, et al., Nucleic Acids Res. 34, D108 (2006).

    Article  Google Scholar 

  21. I. V. Kulakovsky and V. Yu. Makeev, Biofizika 54, 963 (2009).

    Google Scholar 

  22. V. Boeva, et al., Algorithms Mol. Biol. 2, 13 (2007).

    Article  Google Scholar 

  23. J. Majewski and J. Ott, Genome Res. 12, 1827 (2002).

    Article  Google Scholar 

  24. E. Chargaff, R. Lipshitz, C. Green, and M. E. Hodes, J. Biol. Chem. 192, 223 (1951).

    Google Scholar 

  25. A. Emili, J. Greenblatt, and C. J. Ingles, Mol. Cell. Biol. 14, 1582 (1994).

    Google Scholar 

  26. D. Mitchell and R. Bridge, Biochem. Biophys. Res. Commun. 340, 90 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Medvedeva.

Additional information

Original Russian Text © Yu.A. Medvedeva, I.V. Kulakovskii, N.Yu. Oparina, A.V. Favorov, V.Yu. Makeev, 2010, published in Biofizika, 2010, Vol. 55, No. 6, pp. 976–985.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedeva, Y.A., Kulakovskii, I.V., Oparina, N.Y. et al. The GC skew near Pol II start sites and its association with SP1-binding site variants. BIOPHYSICS 55, 901–907 (2010). https://doi.org/10.1134/S0006350910060023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060023

Keywords

Navigation