Skip to main content
Log in

Increasing the accuracy of global alignment of amino acid sequences by constructing a set of alignment candidates

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The accuracy of global Smith-Waterman alignments and Pareto-optimal alignments depending on the degree of sequence similarity (percent of coincidence, %id, and the number of removed fragments NGap) has been examined. An algorithm for constructing a set of three to six alignments has been developed of which the best alignment on the average exceeds in accuracy the best alignment that can be constructed using the Smith-Waterman algorithm. For weakly homologous sequences (%id 15, NGap 20), the increase in accuracy is on the average about 8%, with the average accuracy of the global Smith-Waterman alignments being about 38% (the accuracy was estimated on model test sets).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathematical Methods for DNA Sequences, Ed. by M. S. Waterman (CRC Press, Boca Raton, FL, 1989).

    MATH  Google Scholar 

  2. G. H. Gonnet, M. A. Cohen, and S. A. Benner, Science 256(5062), 1443 (1992).

    Article  ADS  Google Scholar 

  3. M. Zvelebil and J. O. Baum, Understanding Bioinformatics (Garland Science, London, 2007).

    Google Scholar 

  4. S. R. Sunyaev, G. A. Bogopolsky, N. V. Oleynikova, et al., Proteins 54, 569 (2004).

    Article  Google Scholar 

  5. G. Vogt, T. Etzold, and P. Argos, J. Mol. Biol. 249, 816 (1995).

    Article  Google Scholar 

  6. V. Polyanovsky, M. A. Roytberg, and V. G. Tumanyan, Comput. Biol. 15(4), 379 (2008).

    Article  MathSciNet  Google Scholar 

  7. I. I. Litvinov, M. Yu. Lobanov, A. A. Mironov, et al., Mol. Biol. 40(3), 533 (2006).

    Article  Google Scholar 

  8. A. Wallqvist, Y. Fukunishi, L. R. Murphy, et al., Bioinformatics 16, 988 (2000).

    Article  Google Scholar 

  9. M. S. Waterman, Proc. Natl. Acad. Sci. USA 80,10 3123 (1983).

    Article  MATH  ADS  Google Scholar 

  10. T. M. Byers and M. S. Waterman, Oper Res. 32, 1381 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Vingron, Curr. Opinion Struct. Biol. 6(3), 346 (1996).

    Article  Google Scholar 

  12. W. M. Fitch and T. F. Smith, Proc. Natl. Acad. Sci. USA 80, 1382 (1983).

    Article  ADS  Google Scholar 

  13. M. S. Waterman, M. Eggert, and E. Lander, Proc. Natl. Acad. Sci. USA 89, 6090 (1992).

    Article  ADS  Google Scholar 

  14. D. Fernandez-Baca and S. Srinivasam, Operat. Res. Letters 10, 87 (1991).

    Article  MATH  Google Scholar 

  15. D. Gusfield, K. Balasubramian, and K. Naor, in Proc. 3rd Ann. ACM-SIAM Discrete Algorithms (1992), pp. 432–439.

  16. M. A. Roytberg, Preprint (ONTI NTsBI, Pushchino, 1994) [in Russian].

  17. M. A. Roytberg, M. N. Simeonenkov, and O. Yu. Tabolina, Biofizika 44(4). 581 (1998).

    Google Scholar 

  18. I. M. Gukov, T. V. Astahova, M. A. Roytberg, et al., Proc. Moscow Conf. Computat. Molecular Biol. (MCCMB’05, Moscow, 2005), p. 136.

    Google Scholar 

  19. V. Pareto, Manual of Political Economy (A. M. Kelley, New York, 1972).

    Google Scholar 

  20. R. C. Edgar, Nucl. Acids Res. 32(5), 1792 (2004).

    Article  Google Scholar 

  21. S. A. Benner, M. A. Cohen, and G. H. Gonnet, J. Mol. Biol. 229, 1065 (1993).

    Article  Google Scholar 

  22. M. Dayhoff, R. Schwartz, and B. Orcutt, Ed. M. Dayhoff, in Atlas of Protein Sequence and Structure (National Biomedical Research Foundation, Washington, 1978), pp. 345–352.

    Google Scholar 

  23. V. O. Polyanovsky, M. A. Roytberg, and V. G. Tumanyan, Biofizika 53(4), 533 (2008).

    MathSciNet  Google Scholar 

  24. G. Vogt, T. Etzold, and P. Argos, J. Mol. Biol. 249, 816 (1995).

    Article  Google Scholar 

  25. F. S. Domingues, P. Lackner, A. Andreeva, and M. J. Sippl, J. Mol. Biol. 297, 1003 (2000).

    Article  Google Scholar 

  26. T. F. Smith and M. S. Waterman, J. Mol. Biol. 147, 195 (1981).

    Article  Google Scholar 

  27. http://www.be.embnet.org/embosshelp/stretcher.html

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Yakovlev, M.A. Roytberg, 2010, published in Biofizika, 2010, Vol. 55, No. 6, pp. 965–975.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovlev, V.V., Roytberg, M.A. Increasing the accuracy of global alignment of amino acid sequences by constructing a set of alignment candidates. BIOPHYSICS 55, 891–900 (2010). https://doi.org/10.1134/S0006350910060011

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350910060011

Keywords

Navigation