Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields

Abstract

A number of effects of weak combined (static and alternating) magnetic fields with an alternating component of tens and hundreds nT at a collinear static field of 42 μT, which is equivalent to the geomagnetic field, have been found: activation of fission and regeneration of planarians Dugesia tigrina, inhibition of the growth of the Ehrlich ascites carcinoma in mice, stimulation of the production of the tumor necrosis factor by macrophages, decrease in the protection of chromatin against the action of DNase 1, and enhancement of protein hydrolysis in systems in vivo and in vitro. The frequency and amplitude ranges for the alternating component of weak combined magnetic fields have been determined at which it affects various biological systems. Thus, the optimal amplitude at a frequency of 4.4 Hz is 100 nT (effective value); at a frequency of 16.5 Hz, the range of effective amplitudes is broader, 150–300 nT; and at a frequency of 1 (0.5) Hz, it is 300 nT. The sum of close frequencies (e.g., 16 and 17 Hz) produces a similar biological effect as the product of the modulating (0.5 Hz) and carrying frequencies (16.5 Hz), which is explained by the ratio A = A 0sinω1 t + A 0sinω2 t = 2A 0sin(ω1 + ω2)t/2cos(ω1–ω2)t/2. The efficiency of magnetic signals with pulsations (the sum of close frequencies) is more pronounced than that of sinusoidal frequencies. These data may indicate the presence of several receptors of weak magnetic fields in biological systems and, as a consequence, a higher efficiency of the effect at the simultaneous adjustment to these frequencies by the field. Even with consideration of these facts, the mechanism of the biological action of weak combined magnetic fields remains still poorly understood.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. R. Liboff, J. Alternat. and Comp. Med. 10(1), 41 (2004).

    Article  MathSciNet  Google Scholar 

  2. 2.

    C. Blackman, Pathophysiology 16, 205 (2009).

    Article  Google Scholar 

  3. 3.

    M. Zhadin and L. Giuliani, Electromagn. Biol. Med. 25(4), 227 (2006).

    Article  Google Scholar 

  4. 4.

    N. A. Belova, O. N. Ermakova, A. M. Ermakov, et al., Environmentalist 27, 411 (2008).

    Article  Google Scholar 

  5. 5.

    N. V. Sheikina, V. A. Bondarenko, and N. I. Bogatina, Biofiz. Visn. no. 20, 96 (2008).

  6. 6.

    V. N. Binhi and A. B. Rubin, Electromagn. Biol. Med. 26(1), 45 (2007).

    Article  Google Scholar 

  7. 7.

    V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics 29(5), 387 (2008).

    Article  Google Scholar 

  8. 8.

    V. V. Novikov, G. V. Novikov, and E. E. Fesenko, Bioelectromagnetics 30(5), 343 (2009).

    Article  Google Scholar 

  9. 9.

    E. Berman, et al., Bioelectromagnetics 11(2), 169 (1990).

    Article  Google Scholar 

  10. 10.

    C. F. Blackman, S. G. Benane, and D. E. House, Bioelectromagnetics 22(2), 122 (2001).

    Article  Google Scholar 

  11. 11.

    N. A. Belova and V. V. Lednev, Biofizika 46(1), 122 (2001).

    Google Scholar 

  12. 12.

    J. Juutilainen, E. Laara, and K. Saali, Internat. J. Radiation Biology & Relative Studies on Phys. Chem. Med. 52(5), 787 (1987).

    Article  Google Scholar 

  13. 13.

    R. P. Liburdy, T. R. Sloma, R. Sokolic, and P. Yaswen, J. Pineal Res. 14, 89 (1993).

    Article  Google Scholar 

  14. 14.

    M. A. Persinger, L. L. Cook, and S. A. Koren, Internat. J. Neuroscie. 100(1/4), 107 (1999).

    Google Scholar 

  15. 15.

    V. V. Novikov, Biophysics 49, S43 (2004).

    Google Scholar 

  16. 16.

    N. V. Bobkova, V. V. Novikov, N. L. Medvinskaya, et al., Biophysics 50,Suppl. 1, S2 (2005).

    Google Scholar 

  17. 17.

    V. V. Novikov, V. O. Ponomarev, and E. E. Fesenko, Biophysics 50,Suppl. 1, S110 (2005).

    Google Scholar 

  18. 18.

    V. V. Novikov, N. I. Novikova, and A. K. Kachan, Biofizika 41(4), 934 (1996).

    Google Scholar 

  19. 19.

    L. P. Semikhina, Candidate’s Dissertation in Physics and Mathematics (Moscow, 1989).

  20. 20.

    V. V. Novikov and M. N. Zhadin, Biofizika 39(1), 45 (1994).

    Google Scholar 

  21. 21.

    M. N. Zhadin, V. V. Novikov, F. S. Barnes, and N. F. Bioelectromagnetics 19, 41 (1998).

    Google Scholar 

  22. 22.

    A. Pazur, Biomagnetic. Res. Technol. 2, 8 (2004).

    Article  ADS  Google Scholar 

  23. 23.

    N. Comisso, E. Del Giudice, A. De Ninno, et al., Bioelectromagnetics 27, 16 (2006).

    Article  Google Scholar 

  24. 24.

    D. Alberto, L. Busso, R. Garfagnini R, et al., Electromagnetic Biology and Medicine 27(3), 241 (2008).

    Article  Google Scholar 

  25. 25.

    L. Giuliani, S. Grimaldi, A. Lisi, et al., Biomagn. Res. Technol. 6, 1 (2008).

    Article  Google Scholar 

  26. 26.

    V. V. Novikov and A. V. Karnaukhov, Bioelectromagnetics 18(1), 25 (1997).

    Article  Google Scholar 

  27. 27.

    A. L. Buchachenko, D. A. Kuznetsov, and V. L. Berdinskii, Biofizika 51(3), 545 (2006).

    Google Scholar 

  28. 28.

    V. V. Lednev, Collection of Papers (Shmidt Joint Inst. Of Terrestrial Physics, 2003), pp.130–136 [in Russian].

  29. 29.

    V. O. Ponomarev and V. V. Novikov, Biofizika 54(2), 235 (2009).

    Google Scholar 

  30. 30.

    E. Del Giudice, M. Fleischmann, G. Preparata, and G. Talpo, Bioelectromagnetics 23, 522 (2002).

    Article  Google Scholar 

  31. 31.

    E. Del Giudice and G. Vitiello, Phys. Rev. A 74 022105: 1-9.

  32. 32.

    A. R. Liboff, J. Biol. Phys. 13, 99 (1985a).

    Article  Google Scholar 

  33. 33.

    A. R. Liboff, in: Interactions between Electromagnetic Fields and Cells, Ed. by A. Chiabrera, C. Nicolini, H. P. Schwan (Plenum, New York, 1985b), pp. 281–296.

    Google Scholar 

  34. 34.

    C. F. Blackman, S. G. Benane, D. E. House, and W. T. Joines, Bioelectromagnetics 6(1), 1 (1985a).

    Article  Google Scholar 

  35. 35.

    C. F. Blackman, S. G. Benane, J. R. Rabinowitz, et al., Bioelectromagnetics 6(4), 327 (1985b).

    Article  Google Scholar 

  36. 36.

    V. V. Lednev, Bioelectromagnetics 12(2), 71 (1991).

    Article  Google Scholar 

  37. 37.

    V. V. Lednev, Biofizika 41(1), 224 (1996).

    Google Scholar 

  38. 38.

    L.A. Tchizhevsky, Epidemic Catastrophes and Periodical Activity of the Sun (Moscow, 1931) [in Russian].

  39. 39.

    L.A. Tchizhevsky, Terrestrial Echo of Solar Storms (Mysl’, Moscow, 1976) [in Russian].

    Google Scholar 

  40. 40.

    G. V. Novikov, V. V. Novikov and E. E. Fesenko, Biofizika 54(6), 1120 (2009).

    Google Scholar 

  41. 41.

    V. V. Novikov, Doctoral Dissertation (Moscow, 2005).

  42. 42.

    V. V. Novikov, Yu. P. Shvetsov, and E. E. Fesenko, Biofizika 42(3), 746 (1997).

    Google Scholar 

  43. 43.

    Yu. P. Shvetsov, V. V. Novikov, A. P. Chernov, et al., Biofizika 43(6), 977 (1998).

    Google Scholar 

  44. 44.

    E. E. Fesenko, V. V. Novikov, and Yu. P. Shvetsov, Biofizika 42(3), 742 (1997).

    Google Scholar 

  45. 45.

    V. V. Novikov and E. E. Fesenko, Biofizika 46(2), 235 (2001).

    Google Scholar 

  46. 46.

    E. E. Fesenko, V. V. Novikov, and N. V. Bobkova, Biofizika 48(2), 217 (2003).

    Google Scholar 

  47. 47.

    N. V. Bobkova, V. V. Novikov, N. I. Medvinskaya, and I. Yu. Aleksandrova, Uspekhi Sovrem. Estestvoznaniya 2(6), Suppl. 1, 97 (2004).

    Google Scholar 

  48. 48.

    E. G. Novoselova, V. B. Ogai, O. V. Sorokina, et al., Biofizika 46(1), 131 (2001).

    Google Scholar 

  49. 49.

    Yu. A. Vadimirov, Sorov. Obraz. Zh. 6(9), 2 (2002).

    Google Scholar 

  50. 50.

    N. K. Zenkov, V. Z. Lankin, and E. B. Men’shikova, Oxidative stress: Biochemical and Pathophysiological Aspects (MAIK Nauka/Interperiodika, Moscow, 2001).

    Google Scholar 

  51. 51.

    E. B. Burlakova, A. A. Kondradov, and E. L. Mal’tseva, Biofizika 49, 551 (2004).

    Google Scholar 

  52. 52.

    J. Yuan and A. M. Shiller, Anal. Chem. 71(10), 1975 (1999).

    Article  Google Scholar 

  53. 53.

    E. Yu. Stavitskaya, S. N. Zobova, N. V. Sergeev, et al., Byull. SO RAMN 110(4), 48 (2003).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. V. Novikov.

Additional information

Original Russian Text © V.V. Novikov, V.O. Ponomarev, G.V. Novikov, V.V. Kuvichkin, E.V. Yablokova, E.E. Fesenko, 2010, published in Biofizika, 2010, Vol. 55, No. 4, pp. 631–639.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Novikov, V.V., Ponomarev, V.O., Novikov, G.V. et al. Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields. BIOPHYSICS 55, 565–572 (2010). https://doi.org/10.1134/S0006350910040081

Download citation

Keywords

  • magnetic field
  • biological effects
  • planarians
  • malignant tumors
  • proteins
  • peroxides
  • reactive oxygen species