Advertisement

Biophysics

, Volume 55, Issue 4, pp 565–572 | Cite as

Effects and molecular mechanisms of the biological action of weak and extremely weak magnetic fields

  • V. V. NovikovEmail author
  • V. O. Ponomarev
  • G. V. Novikov
  • V. V. Kuvichkin
  • E. V. Yablokova
  • E. E. Fesenko
Molecular Biophysics

Abstract

A number of effects of weak combined (static and alternating) magnetic fields with an alternating component of tens and hundreds nT at a collinear static field of 42 μT, which is equivalent to the geomagnetic field, have been found: activation of fission and regeneration of planarians Dugesia tigrina, inhibition of the growth of the Ehrlich ascites carcinoma in mice, stimulation of the production of the tumor necrosis factor by macrophages, decrease in the protection of chromatin against the action of DNase 1, and enhancement of protein hydrolysis in systems in vivo and in vitro. The frequency and amplitude ranges for the alternating component of weak combined magnetic fields have been determined at which it affects various biological systems. Thus, the optimal amplitude at a frequency of 4.4 Hz is 100 nT (effective value); at a frequency of 16.5 Hz, the range of effective amplitudes is broader, 150–300 nT; and at a frequency of 1 (0.5) Hz, it is 300 nT. The sum of close frequencies (e.g., 16 and 17 Hz) produces a similar biological effect as the product of the modulating (0.5 Hz) and carrying frequencies (16.5 Hz), which is explained by the ratio A = A 0sinω1 t + A 0sinω2 t = 2A 0sin(ω1 + ω2)t/2cos(ω1–ω2)t/2. The efficiency of magnetic signals with pulsations (the sum of close frequencies) is more pronounced than that of sinusoidal frequencies. These data may indicate the presence of several receptors of weak magnetic fields in biological systems and, as a consequence, a higher efficiency of the effect at the simultaneous adjustment to these frequencies by the field. Even with consideration of these facts, the mechanism of the biological action of weak combined magnetic fields remains still poorly understood.

Keywords

magnetic field biological effects planarians malignant tumors proteins peroxides reactive oxygen species 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Liboff, J. Alternat. and Comp. Med. 10(1), 41 (2004).CrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Blackman, Pathophysiology 16, 205 (2009).CrossRefGoogle Scholar
  3. 3.
    M. Zhadin and L. Giuliani, Electromagn. Biol. Med. 25(4), 227 (2006).CrossRefGoogle Scholar
  4. 4.
    N. A. Belova, O. N. Ermakova, A. M. Ermakov, et al., Environmentalist 27, 411 (2008).CrossRefGoogle Scholar
  5. 5.
    N. V. Sheikina, V. A. Bondarenko, and N. I. Bogatina, Biofiz. Visn. no. 20, 96 (2008).Google Scholar
  6. 6.
    V. N. Binhi and A. B. Rubin, Electromagn. Biol. Med. 26(1), 45 (2007).CrossRefGoogle Scholar
  7. 7.
    V. V. Novikov, I. M. Sheiman, and E. E. Fesenko, Bioelectromagnetics 29(5), 387 (2008).CrossRefGoogle Scholar
  8. 8.
    V. V. Novikov, G. V. Novikov, and E. E. Fesenko, Bioelectromagnetics 30(5), 343 (2009).CrossRefGoogle Scholar
  9. 9.
    E. Berman, et al., Bioelectromagnetics 11(2), 169 (1990).CrossRefGoogle Scholar
  10. 10.
    C. F. Blackman, S. G. Benane, and D. E. House, Bioelectromagnetics 22(2), 122 (2001).CrossRefGoogle Scholar
  11. 11.
    N. A. Belova and V. V. Lednev, Biofizika 46(1), 122 (2001).Google Scholar
  12. 12.
    J. Juutilainen, E. Laara, and K. Saali, Internat. J. Radiation Biology & Relative Studies on Phys. Chem. Med. 52(5), 787 (1987).CrossRefGoogle Scholar
  13. 13.
    R. P. Liburdy, T. R. Sloma, R. Sokolic, and P. Yaswen, J. Pineal Res. 14, 89 (1993).CrossRefGoogle Scholar
  14. 14.
    M. A. Persinger, L. L. Cook, and S. A. Koren, Internat. J. Neuroscie. 100(1/4), 107 (1999).Google Scholar
  15. 15.
    V. V. Novikov, Biophysics 49, S43 (2004).Google Scholar
  16. 16.
    N. V. Bobkova, V. V. Novikov, N. L. Medvinskaya, et al., Biophysics 50,Suppl. 1, S2 (2005).Google Scholar
  17. 17.
    V. V. Novikov, V. O. Ponomarev, and E. E. Fesenko, Biophysics 50,Suppl. 1, S110 (2005).Google Scholar
  18. 18.
    V. V. Novikov, N. I. Novikova, and A. K. Kachan, Biofizika 41(4), 934 (1996).Google Scholar
  19. 19.
    L. P. Semikhina, Candidate’s Dissertation in Physics and Mathematics (Moscow, 1989).Google Scholar
  20. 20.
    V. V. Novikov and M. N. Zhadin, Biofizika 39(1), 45 (1994).Google Scholar
  21. 21.
    M. N. Zhadin, V. V. Novikov, F. S. Barnes, and N. F. Bioelectromagnetics 19, 41 (1998).Google Scholar
  22. 22.
    A. Pazur, Biomagnetic. Res. Technol. 2, 8 (2004).CrossRefADSGoogle Scholar
  23. 23.
    N. Comisso, E. Del Giudice, A. De Ninno, et al., Bioelectromagnetics 27, 16 (2006).CrossRefGoogle Scholar
  24. 24.
    D. Alberto, L. Busso, R. Garfagnini R, et al., Electromagnetic Biology and Medicine 27(3), 241 (2008).CrossRefGoogle Scholar
  25. 25.
    L. Giuliani, S. Grimaldi, A. Lisi, et al., Biomagn. Res. Technol. 6, 1 (2008).CrossRefGoogle Scholar
  26. 26.
    V. V. Novikov and A. V. Karnaukhov, Bioelectromagnetics 18(1), 25 (1997).CrossRefGoogle Scholar
  27. 27.
    A. L. Buchachenko, D. A. Kuznetsov, and V. L. Berdinskii, Biofizika 51(3), 545 (2006).Google Scholar
  28. 28.
    V. V. Lednev, Collection of Papers (Shmidt Joint Inst. Of Terrestrial Physics, 2003), pp.130–136 [in Russian].Google Scholar
  29. 29.
    V. O. Ponomarev and V. V. Novikov, Biofizika 54(2), 235 (2009).Google Scholar
  30. 30.
    E. Del Giudice, M. Fleischmann, G. Preparata, and G. Talpo, Bioelectromagnetics 23, 522 (2002).CrossRefGoogle Scholar
  31. 31.
    E. Del Giudice and G. Vitiello, Phys. Rev. A 74 022105: 1-9.Google Scholar
  32. 32.
    A. R. Liboff, J. Biol. Phys. 13, 99 (1985a).CrossRefGoogle Scholar
  33. 33.
    A. R. Liboff, in: Interactions between Electromagnetic Fields and Cells, Ed. by A. Chiabrera, C. Nicolini, H. P. Schwan (Plenum, New York, 1985b), pp. 281–296.Google Scholar
  34. 34.
    C. F. Blackman, S. G. Benane, D. E. House, and W. T. Joines, Bioelectromagnetics 6(1), 1 (1985a).CrossRefGoogle Scholar
  35. 35.
    C. F. Blackman, S. G. Benane, J. R. Rabinowitz, et al., Bioelectromagnetics 6(4), 327 (1985b).CrossRefGoogle Scholar
  36. 36.
    V. V. Lednev, Bioelectromagnetics 12(2), 71 (1991).CrossRefGoogle Scholar
  37. 37.
    V. V. Lednev, Biofizika 41(1), 224 (1996).Google Scholar
  38. 38.
    L.A. Tchizhevsky, Epidemic Catastrophes and Periodical Activity of the Sun (Moscow, 1931) [in Russian].Google Scholar
  39. 39.
    L.A. Tchizhevsky, Terrestrial Echo of Solar Storms (Mysl’, Moscow, 1976) [in Russian].Google Scholar
  40. 40.
    G. V. Novikov, V. V. Novikov and E. E. Fesenko, Biofizika 54(6), 1120 (2009).Google Scholar
  41. 41.
    V. V. Novikov, Doctoral Dissertation (Moscow, 2005).Google Scholar
  42. 42.
    V. V. Novikov, Yu. P. Shvetsov, and E. E. Fesenko, Biofizika 42(3), 746 (1997).Google Scholar
  43. 43.
    Yu. P. Shvetsov, V. V. Novikov, A. P. Chernov, et al., Biofizika 43(6), 977 (1998).Google Scholar
  44. 44.
    E. E. Fesenko, V. V. Novikov, and Yu. P. Shvetsov, Biofizika 42(3), 742 (1997).Google Scholar
  45. 45.
    V. V. Novikov and E. E. Fesenko, Biofizika 46(2), 235 (2001).Google Scholar
  46. 46.
    E. E. Fesenko, V. V. Novikov, and N. V. Bobkova, Biofizika 48(2), 217 (2003).Google Scholar
  47. 47.
    N. V. Bobkova, V. V. Novikov, N. I. Medvinskaya, and I. Yu. Aleksandrova, Uspekhi Sovrem. Estestvoznaniya 2(6), Suppl. 1, 97 (2004).Google Scholar
  48. 48.
    E. G. Novoselova, V. B. Ogai, O. V. Sorokina, et al., Biofizika 46(1), 131 (2001).Google Scholar
  49. 49.
    Yu. A. Vadimirov, Sorov. Obraz. Zh. 6(9), 2 (2002).Google Scholar
  50. 50.
    N. K. Zenkov, V. Z. Lankin, and E. B. Men’shikova, Oxidative stress: Biochemical and Pathophysiological Aspects (MAIK Nauka/Interperiodika, Moscow, 2001).Google Scholar
  51. 51.
    E. B. Burlakova, A. A. Kondradov, and E. L. Mal’tseva, Biofizika 49, 551 (2004).Google Scholar
  52. 52.
    J. Yuan and A. M. Shiller, Anal. Chem. 71(10), 1975 (1999).CrossRefGoogle Scholar
  53. 53.
    E. Yu. Stavitskaya, S. N. Zobova, N. V. Sergeev, et al., Byull. SO RAMN 110(4), 48 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. V. Novikov
    • 1
    Email author
  • V. O. Ponomarev
    • 1
  • G. V. Novikov
    • 1
  • V. V. Kuvichkin
    • 1
  • E. V. Yablokova
    • 1
  • E. E. Fesenko
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations