Skip to main content
Log in

Systems radioecology: Modeling of ecological processes and assessment of radiation risks

  • Radiobiology and Radioecology
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Outlined are the background and tasks of systems radioecology as a separate branch of radiation ecology based on systems analysis and mathematical modeling. The need is justified for developing appropriate methods in this field for assessing the radiation tolerance of natural systems and the radioecological risks. Particular examples demonstrate the use of different approaches in analyzing the functioning of forest biogeocenoses after acute irradiation and studying the impacts of radioactive contamination of meadow ecosystems on humans and biota. Trends of further studies are outlined, focusing on improvement of systems radioecology methods combined within an integrated methodological framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Odum, Fundamentals of Ecology (Mir, Moscow, 1975).

    Google Scholar 

  2. R. M. Alexakhin and V. S. Prister, Radiats. Biol. Radioekol. 48(6), 645 (2008).

    Google Scholar 

  3. R. M. Alexakhin and V. S. Prister, Radiats. Biol. Radioekol. 48(2), 234 (2008).

    Google Scholar 

  4. R. M. Alexakhin, N. I. Sanzharova, and S. V. Fesenko, Atom Energiya 100(4), 267 (2006).

    Google Scholar 

  5. V. D. Fedorov and T. G. Gil’manov, Ecology (Izd. MGU, Moscow, 1980) [in Russian].

    Google Scholar 

  6. Agricultural Radioecology, Ed. by R. M. Alexakhin and N. A. Korneeva (Ekologiya, Moscow, 1991) [in Russian].

    Google Scholar 

  7. T. Naylor, Computer Simulation Experiments with Models of Economic Systems (Mir, Moscow, 1975) [in Russian].

    MATH  Google Scholar 

  8. S. I. Spiridonov, Doctoral Dissertation in Biology (Inst. Agric. Radiol. Radioecol., Obninsk, 2003).

  9. S. I. Spiridonov, M. K. Mukusheva, V. M. Solomatin, and V. L. Tetenkin, Proc. Int. Conf. Radioecology and Environmental Radioactivity (Bergen, 15–20 June 2008). Posters — part 1 (NRPA, Osteras (Norway), 2008), pp. 321–323.

    Google Scholar 

  10. V. L. Tetenkin, S. I. Spiridonov, M. K. Mukusheva, and V. M. Solomatin, Proc. Int. Conf. Radioecology and Environmental Radioactivity (Bergen, 15–20 June 2008). Posters — part 1 (NRPA, Osteras (Norway), 2008), pp. 328–331.

    Google Scholar 

  11. S. I. Spiridonov, S. V. Fesenko, and I. A. Gontarenko, Radiats. Biol. Radioekol. 44(1), 104 (2004).

    Google Scholar 

  12. F. Brechignac, Sci. Total Environ. 307, 35 (2003).

    Article  Google Scholar 

  13. D. S. Woodhead, J. Environ. Radioact. 66, 181 (2003).

    Article  Google Scholar 

  14. C. Thomson, Nucl. Eng. Int. no. 3, 12 (2008).

  15. S. I. Spiridonov, S. V. Fesenko, R. M. Alexakhin, and D. A. Spirin, Radiobiologiya 29(4), 544 (1989).

    Google Scholar 

  16. R. M. Alexakhin, R. T. Karaban, B. S. Prister, et al., Sci. Total Environ. 157, 357 (1994).

    Article  Google Scholar 

  17. D. A. Spirin, G. N. Romanov, E. A. Fedorov, and R. M. Alexakhin, Ekologiya no. 4, 25 (1988).

  18. D. A. Spirin, N. N. Mishenkov, R. M. Alexakhin, and R. T. Karaban, Lesovedenie no. 3, 87 (1983).

  19. N. Semiochkina, G. Voigt, M. Mukusheva, et al., Health Phys. 86(2), 187 (2004).

    Article  Google Scholar 

  20. S. I. Spiridonov, I. A. Gontarenko, M. K. Mukusheva, et al., Radiats. Biol. Radioekol. 45(4), 480 (2005).

    Google Scholar 

  21. S. I. Spiridonov, M. K. Mukusheva, O. A. Shubina, et al., Radiats. Biol. Radioekol. 48(2), 218 (2008).

    Google Scholar 

  22. S. V. Fesenko, Candidate’s Dissertation in Physics & Math. (MIFI, Moscow, 1985).

    Google Scholar 

  23. V. P. Mashkovich, Protection from Ionizing Radiation (Energoatomizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  24. R. M. Alexakhin and S. V. Fesenko, Radiats. Biol. Radioekol. 44(1), 93 (2004).

    Google Scholar 

  25. DOE Standard. A Graded Approach for Evaluation Radiation Doses to Aquatic and Terrestrial Biota (US Department of Energy, Washington D.C., 2000), Project ENVR-0011.

  26. G. Bird, P. Thompson, C. MacDonald, et al., Supporting Document for the Priority Substances List Assessment of Release of Radionuclides from Nuclear Facilities (Impact on Non-Human Biota) (Canadian Nuclear Safety Commission, Ottawa, 2000).

    Google Scholar 

  27. D-ERICA: An Integrated Approach to the Assessment and Management of Environmental Risks from Ionizing Radiation, Project FI6R-CT-2004-508847 (Swedish Radiation Protection Authority, 2007).

  28. S. V. Fesenko, R. M. Alexakhin, S.A. Geraskin, et al., Radiats. Biol. Radioekol. 44(6) 618 (2004).

    Google Scholar 

  29. S.A. Geraskin, S. V. Fesenko, and R. M. Alexakhin, Environ. Int. 34(5), 880 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Spiridonov.

Additional information

Original Russian Text © S.I. Spiridonov, 2009, published in Radiatsionnaya Biologiya. Radioekologiya, 2009, Vol. 49, No. 3, pp. 346–354.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiridonov, S.I. Systems radioecology: Modeling of ecological processes and assessment of radiation risks. BIOPHYSICS 55, 484–490 (2010). https://doi.org/10.1134/S000635091003022X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091003022X

Key words

Navigation