Skip to main content
Log in

Effects of dinitrosyl iron complex with glutathione and its components on ischemic rat heart during reperfusion

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of a complex of dinitrosyl iron with glutathione (DNIC-GS) lyophilized on dextran, its hydrolysis products (glutathione, nitrosoglutathione, dextran), as well as nitric oxide released from the drug on the energy metabolism and functional recovery of isolated perfused rat heart subjected to global ischemia and reperfusion have been studied. Infusion of 100 nM DNIC-GS after ischemia substantially enhanced the recovery of coronary flow, cardiac contractile and pump functions during reperfusion, with simultaneous preservation of myocardial high-energy phosphates and cell membrane integrity. It was shown by EPR that these effects were associated with transfer of Fe+(NO+)2 groups from DNIC-GS to thiol-containing proteins of cardiomyocytes and coronary vessels. Combined infusion of 100 nM DNIC-GS and 25 μM 2-(phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, after ischemia profoundly reduced the metabolic and functional recovery of reperfused hearts. After postischemic administration of an equivalent amount of DNIC-GS hydrolysate (completely decomposed complex), most of the indices did not differ from those in control or were significantly lower. Thus, inclusion of Fe+(NO+)2 groups into myocardial tissue and spontaneous release of nitric oxide trigger the protective mechanisms in the ischemic heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFI:

contractile function intensity

Cr:

creatine

DNIC:

dinitrosyl iron complex

GSH:

glutathione

GSNO:

S-nitrosoglutathione

KS:

Krebs solution

LDH:

lactate dehydrogenase

PCr:

phosphocreatine

PTIO:

2-(phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide

References

  1. R. D. Rakhit and M. S. Marberb, Heart 86, 368 (2001).

    Article  Google Scholar 

  2. R. Shultz, M. Kelm, and G. Heusch, Cardiovasc. Res. 61, 402 (2004).

    Article  Google Scholar 

  3. A. F. Vanin and E. van Faassen, in Radicals for Live: The Various Forms of Nitric Oxide, Ed. by T. van Faassen and A. F. Vanin (Elsevier, Amsterdam, 2007), pp. 19–74.

    Google Scholar 

  4. O. I. Pisarenko, L. I. Serebryakova, O. V. Tskitishvili, et al., Izv. RAN, Ser. Biol., no. 1, 1 (2008).

  5. O. I. Pisarenko, L. I. Serebryakova, O. V. Tskitishvili, et al., Fiziol. Zh. I.M. Sechenova 95(5), 465 (2009).

    Google Scholar 

  6. S. Levitsky, E. D. Mullin, R. E. Sloane, et al., Circulation 43, I124 (1971).

    Google Scholar 

  7. M. P. Kidd, Altern. Med. Rev. 2, 155 (1997).

    Google Scholar 

  8. M. Nakamura, V. H. Thourani, R. S. Ronson, et al., Circulation 102, III332 (2000).

    Google Scholar 

  9. A. Blaustein, S. M. Deneke, R. I. Stolz, et al., Circulation 80, 1449 (1989).

    Google Scholar 

  10. G. R. Upchurh, G. N. Welch, and A. J. Fabian, J. Biol. Chem. 272, 17012 (1997).

    Article  Google Scholar 

  11. J. Sun, M. Morgan, R.-F. Shen, et al., Circ. Res. 101, 1155 (2007).

    Article  Google Scholar 

  12. E. A. Konorev, M. M. Tarpey, J. Joseph, et al., J. Pharmacol. Exp. Ther. 274, 200 (1995).

    Google Scholar 

  13. A. F. Vanin, V. O. Lozinskii, and V. I. Kapel’ko, RF Patent 2291880 (2005).

  14. O. I. Pisarenko, I. M. Studneva, V. S. Shulzhenko, and A. A. Timoshin, Biomed. Khim. 53(3), 313 (2007).

    Google Scholar 

  15. W. Lamprecht and I. Trautschold, in Methods of Enzymatic Analysis, Ed. by H. U. Bergmeyer (Academic Press, N.Y., 1974), pp. 1777–1781.

    Google Scholar 

  16. E. Bernt, H. U. Bergmeyer, and H. Mollering, in Methods of Enzymatic Analysis, Ed. by H. U. Bergmeyer (Academic Press, N.Y., 1974), pp. 1772–1776.

    Google Scholar 

  17. I. Gutman and A. W. L. Wahlenfeld, in Methods of Enzymatic Analysis, Ed. by H. U. Bergmeyer (Academic Press, N.Y., 1974), pp. 1464–1467.

    Google Scholar 

  18. T. Bucher, R. Czok, W. Lamprecht, and E. Latzko, in Methods of Enzymatic Analysis, Ed. by H. U. Bergmeyer (Academic Press, N.Y., 1974), pp. 2253–2259.

    Google Scholar 

  19. A. A. Timoshin, O. I. Pisarenko, V. L. Lakomkin, et al., Experim. Clin. Cardiol. 5, 59 (2000).

    Google Scholar 

  20. K. A. Reimer, M. L. Hill, and R. B. Jennings, J. Mol. Cell Cardiol. 13(2), 229 (1981).

    Article  Google Scholar 

  21. A. A. Timoshin, A. F. Vanin, Ts. R. Orlova, et al., Nitric Oxide Biol. Chem. 16, 286 (2007).

    Article  Google Scholar 

  22. V. L. Lakomkin, A. F. Vanin, A. A. Timoshin, et al., Nitric Oxide Biol. Chem. 16, 413 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.I. Pisarenko, V.S. Shulzhenko, I.M. Studneva, Yu.A. Pelogeikina, A.A. Timoshin, A.F. Vanin, 2009, published in Biofizika, 2009, Vol. 54, No. 6, pp. 1081–1087.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisarenko, O.I., Shulzhenko, V.S., Studneva, I.M. et al. Effects of dinitrosyl iron complex with glutathione and its components on ischemic rat heart during reperfusion. BIOPHYSICS 54, 709–713 (2009). https://doi.org/10.1134/S0006350909060104

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909060104

Key words

Navigation