Skip to main content
Log in

Application of the standard theory of electronic transitions to the description of oscillations in the kinetics of electron transfer in reaction centers of purple bacteria

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The standard theory of electron transfer between donor and acceptor molecules was used to describe oscillations in the reduction kinetics of the intermediate electron acceptor BA and the primary electron acceptor HA. The kinetics of BA and HA reduction were simulated on the basis of the model with one and two accepting modes. A crucial experiment is offered for choosing the version of theory that would adequately describe oscillations in the kinetics of electron transfer in the reaction centers of purple bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

accepting mode

BChl:

bacteriochlorophyll

ET:

electron transfer

QMO:

quantum mechanical oscillations

RC:

reaction center

References

  1. U. Ermler, G. Fritzsch, S. K. Buchnanan, and H. Michel, Structure 2, 925 (1994).

    Article  Google Scholar 

  2. H. M. Berman, J. Westbrook, Z. G. Feng, et al., Nucl. Acids Res. 28, 235 (2000).

    Article  Google Scholar 

  3. D. M. Jonas, M. L. Lang, Y. Nagassawa, et al., J. Chem. Phys. 100, 12660 (1996).

    Article  Google Scholar 

  4. D. C. Arnett, C. C. Moser, P. L. Dutton, and N. F. Scherer, J. Phys. Chem. B 103, 2014 (1999).

    Article  Google Scholar 

  5. W. W. Parson and A. Warshel, J. Am. Chem. Soc. 109, 6152 (1987).

    Article  Google Scholar 

  6. M. A. Thompson and M. C. Zerner, J. Am. Chem. Soc. 113, 8210 (1991).

    Article  Google Scholar 

  7. K. Wynne, G. Haran, G. D. Reid, et al., J. Phys. Chem. 100, 5140 (1996).

    Article  Google Scholar 

  8. G. Haran, K. Wynne, C. C. Moser, et al., J. Phys. Chem. 100, 5562 (1996).

    Article  Google Scholar 

  9. J. B. Arellano, T. M. Melo, P. K. Fyfe, et al., Photochem. Photobiol. 79, 68 (2004).

    Article  Google Scholar 

  10. B. A. King, T. B. McAnaney, A. deWinter, and S. G. Boxer, J. Phys. Chem. B 104, 8895 (2000).

    Article  Google Scholar 

  11. M. H. Vos, J.-C. Lambry, S. J. Roberts, et al., Proc. Natl. Acad. Sci. USA 89, 613 (1992).

    Article  ADS  Google Scholar 

  12. J. M. Peloquin, S. Lin, A. K. W. Taguchi, and N. W. Woodbury, J. Phys. Chem. 100, 14228 (1996).

    Article  Google Scholar 

  13. V. Z. Paschenko, V. V. Gorokhov, P. P. Knox, et al., Bioelectrochemistry 60, 73 (2003).

    Article  Google Scholar 

  14. M. H. Vos, J-C. Lambry, S. J. Robles, et al., Proc. Natl. Acad. USA 88, 8885 (1991).

    Article  ADS  Google Scholar 

  15. M. H. Vos, M. R. Jones, C. J. Hunter, et al., Biochemistry 33, 6750 (1994).

    Article  Google Scholar 

  16. V. A. Shuvalov, Transformation of Solar Energy in the Primary Act of Charge Separation in Photosynthetic Reaction Centers (Moscow, 2000) [in Russian].

  17. A. G. Yakovlev, A. Y. Shkuropatov, and V. A. Shuvalov, FEBS Lett. 466, 209 (2000).

    Article  Google Scholar 

  18. N. I. Zakharova and I. Yu. Churbanova, Biokhimiya 65, 181 (2000).

    Google Scholar 

  19. L. D. Landau and E. M. Lifshits, Quantum Mechanics. Nonrelativistic Theory (Moscow, 1974) [in Russian].

  20. E. Flugge, Problems on Quantum Mechanics (Mir, Moscow, 1974) [in Russian].

    Google Scholar 

  21. E. P. Petrov, Physics of Charge Transfer in Biosystems (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  22. L. N. Grigorov and D. S. Chernavsky, Biofizika 17(2), 192 (1972).

    Google Scholar 

  23. J. Jortner, Biochim. Biophys. Acta 594, 193 (1980).

    Google Scholar 

  24. L. A. Blumenfeld, V. I. Goldansky, M. I. Podgoretskii, and D. S. Chernavsky, Strukt. Khim., no. 8, 287 (1967).

  25. J. Hopfield, Proc. Natl. Acad. Sci. USA 71, 3640 (1974).

    Article  ADS  Google Scholar 

  26. A. B. Rubin and V. P. Shinkarev, Electron Transport in Biological Systems (Moscow, 1984) [in Russian].

  27. D. S. Chernavsky and N. M. Chernavskaya, Protein Machine (Biological Molecular Constructs) (Moscow, 1999) [in Russian].

  28. D. S. Chernavsky and O. D. Chernavskaya, Krat. Soob. Fiz. FIAN, no. 5, 15 (1999).

  29. A. O. Caldeira and A. J. Leggett, Phys. Rev. A 31, 1059 (1985).

    Article  ADS  Google Scholar 

  30. V. Chernyak, S. Minami, and M. Mukamel, J. Phys. Chem. B 104, 12056 (2000).

    Article  Google Scholar 

  31. V. I. Novoderezhkin, A. G. Yakovlev, R. van Grondelle, and V. A. Shuvalov, J. Phys. Chem. B 108, 7445 (2004).

    Article  Google Scholar 

  32. R. P. Feynman and F. L. Vernon, Ann. Phys. (NY) 24, 118 (1963).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.S. Shchepetov, D.S. Chernavsky, V.V. Gorokhov, V.Z. Paschenko, A.B. Rubin, 2009, published in Biofizika, 2009, Vol. 54, No. 6, pp. 1026–1036.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shchepetov, D.S., Chernavsky, D.S., Gorokhov, V.V. et al. Application of the standard theory of electronic transitions to the description of oscillations in the kinetics of electron transfer in reaction centers of purple bacteria. BIOPHYSICS 54, 691–698 (2009). https://doi.org/10.1134/S0006350909060062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909060062

Key words

Navigation