Skip to main content
Log in

A method of laser dark-field illumination for equal-probability excitation and photobleaching of randomly oriented fluorescent molecules

  • Discussions
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Calculations have been done that allow developing a new type of illuminators optimized for dark-field microscopy and fluorescent nanoscopy, a new type of ultrahigh-resolution microscopy for which we have patent priority, and its later analogs. The concept proposed here substantiates the feasibility of uniformly illuminating different parts of an object to ensure equal probability of excitation and, in due time, simultaneous photobleaching of fluorescent molecules despite the random orientation of their light-absorbing oscillators. The latter is important because non-bleached fluorophores that accumulate in the specimen produce background noise and make it too difficult to locate the centers of spots produced by new fluorescent molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Klimov, D. A. Klimov, E. A. Klimov, and T. V. Klimova, Invention Patent RU2305270, Bulletin 24 (2007.08.27).

  2. E. Betzig, G. H. Patterson, R. Sougrat, et al., Science 313, 1642 (2006).

    Article  ADS  Google Scholar 

  3. H. Shroff, C. G. Galbraith, J. A. Galbraith, et al., Proc. Natl. Acad. Sci. USA 104(51), 20308 (2007).

    Article  ADS  Google Scholar 

  4. S. Manley, J. M. Gillette, G. H. Patterson, et al., Nature Methods 5, 155 (2008).

    Article  Google Scholar 

  5. M. J. Rust, M. Bates, and X. Zhuang, http://www.nature.com/naturemethods, publ. online 9 August2006.

  6. S. W. Hell, Science 316, 1153 (2007).

    Article  ADS  Google Scholar 

  7. A. Egner, C. Geisler, C. Middendor, et al., Biophys. J. 93, 3285 (2007).

    Article  ADS  Google Scholar 

  8. M. A. Schwentker, H. Bock, M. Hofmann, et al., Microscopy Res. Technique 70, 269 (2007).

    Article  Google Scholar 

  9. S. W. Hell, Nature Biotechnology 21(11), 1347 (2003).

    Article  Google Scholar 

  10. S. T. Hess, T. J. Gould, M. V. Gudheti, et al., Proc. Natl. Acad. Sci. USA 104(44), 17370 (2007).

    Article  ADS  Google Scholar 

  11. S. T. Hess, T. P. K. Girirajanyz, and M. D. Masony, Biophys. J. 91, 4258 (2006).

    Article  ADS  Google Scholar 

  12. G. Donnert, C. Eggeling, and S. W. Hell, Nature Methods 4, 81 (2007).

    Article  Google Scholar 

  13. K. I. Willig, R. R. Kellner, R. Medda, et al., Nature Methods 3, 721 (2006).

    Article  Google Scholar 

  14. J. Fölling, V. Belov, D. Riedel, A. Schönle, et al., Chem. Phys. Chem. 9, 321 (2008)

    Google Scholar 

  15. J. Borejdo, O. Assulin, T. Ando, and S. Putnam, J. Mol. Biol. 158, 391 (1982).

    Article  Google Scholar 

  16. http://www.pishaper.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Klimov.

Additional information

Original Russian Text © A.A. Klimov, D.A. Klimov, 2009, published in Biofizika, 2009, Vol. 54, No. 5, pp. 953–960.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimov, A.A., Klimov, D.A. A method of laser dark-field illumination for equal-probability excitation and photobleaching of randomly oriented fluorescent molecules. BIOPHYSICS 54, 661–666 (2009). https://doi.org/10.1134/S0006350909050194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909050194

Key words

Navigation