Glutamate induces formation of free radicals in rat brain synaptosomes

Abstract

The influence of glutamate and agonists of its ionotropic receptors on free radical formation in rat brain synaptosomes was investigated using the fluorescent dye DCFDA. Glutamate at concentrations of 100 μM and 1 mM increased the production of reactive oxygen species. This phenomenon was eliminated by removing calcium from the incubation medium. Addition of NMDA (100 μM) or kainate (100 μM) to a suspension of synaptosomes also led to free radical formation. The influence of glutamate receptor agonists was blocked by the specific antagonists MK-801 and NBQX. Thus, activation of NMDA and AMPA/kainate receptors can lead to oxidative stress in neuronal presynaptic endings.

This is a preview of subscription content, log in to check access.

Abbreviations

AMPA:

a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid

DCFDA:

2′,7′-dichlorofluorescein diacetate

NMDA:

N-methyl-D-aspartate

ROS:

reactive oxygen species

References

  1. 1.

    D. W. Choi, Neuron 1, 623 (1988).

    Article  Google Scholar 

  2. 2.

    P. Lipton, Physiol. Rev. 79, 1431 (1999).

    Google Scholar 

  3. 3.

    J. P. Forder and M. Tymianski, Neurosci. 158, 293 (2009).

    Article  Google Scholar 

  4. 4.

    R. Dingledine, K. Borges, D. Bowie, and S. F. Traynelis, Pharmocol. Rev. 51, 7 (1999).

    Google Scholar 

  5. 5.

    I. J. Reynolds and T. G. Hastings, J. Neurosci. 15, 3318 (1995).

    Google Scholar 

  6. 6.

    M. Lafon-Cazal, S. Pietri, M. Culcasi, and J. Bockaert, Nature 364, 535 (1993).

    Article  ADS  Google Scholar 

  7. 7.

    S. G. Carriedo, H. Z. Yin, S. L. Sensi, and J. H. Weiss, J. Neurosci. 18, 7727 (1998).

    Google Scholar 

  8. 8.

    N. F. Avrova, I. V. Victorov, V. A. Tyurin, et al., Neurochem. Res. 23, 945 (1998).

    Article  Google Scholar 

  9. 9.

    V. Perez-De La Cruz, M. Konigsberg, J. Pedraza-Chaverri, et al., Eur. J. Neurosci. 27, 1075 (2008).

    Article  Google Scholar 

  10. 10.

    T. V. Waseem, A. A. Rakovich, T. V. Lavrukevich, et al., Neurochem. Int. 46, 235 (2005).

    Article  Google Scholar 

  11. 11.

    T. V. Waseem, L. P. Lapatsina, and S. V. Fedorovich, Neurochem. Res. 33, 1316 (2008).

    Article  Google Scholar 

  12. 12.

    A. V. Alekseenko, T. V. Waseem, and S. V. Fedorovich, Brain Res. 1241, 193 (2008).

    Article  Google Scholar 

  13. 13.

    T. V. Waseem, V. A. Kolos, L. P. Lapatsina, and S. V. Fedorovich, Neurosci. Lett. 405, 106 (2006).

    Article  Google Scholar 

  14. 14.

    M. Feligioni, A. Nishimune, and J. M. Henley, Eur. J. Neurosci. 29, 1348 (2009).

    Article  Google Scholar 

  15. 15.

    A. I. M. Breukel, E. Besselsen, F. H. Lopes da Silva, and W. I. J. M. Ghijsen, Eur. J. Neurosci. 10, 106 (1998).

    Article  Google Scholar 

  16. 16.

    N. F. Avrova, K. I. Shestak, I. O. Zakharova, et al., Neurosci. Behav. Physiol. 30, 535 (2000).

    Article  Google Scholar 

  17. 17.

    C. P. LeBel and S. C. Bondy, Neurochem. Int. 17, 435 (1990).

    Article  Google Scholar 

  18. 18.

    J. M. Andersen, O. Myhre, and F. Fonnum, Neurochem. Res. 28, 319 (2003).

    Article  Google Scholar 

  19. 19.

    P. Hajos, Brain Res. 93, 485 (1975).

    Article  Google Scholar 

  20. 20.

    O. Lowry, H. Rosebrough, H. Farr, and R. Randall, J. Biol. Chem. 193, 265 (1951).

    Google Scholar 

  21. 21.

    Z. Hartley and J. M. Dubinsky, J. Neurosci. 13, 4690 (1993).

    Google Scholar 

  22. 22.

    R. P. Irwin, S.-Z. Lin, R. T. Long, and S. M. Paul, J. Neurosci. 14, 1352 (1994).

    Google Scholar 

  23. 23.

    E. H. Wong, J. A. Kemp, T. Priestley, et al., Proc. Natl. Acad. Sci. USA 83, 7104 (1986).

    Article  ADS  Google Scholar 

  24. 24.

    J. C. Randle, T. Guet, A. Cordi, and J. M. Lepagnol, Eur. J. Pharmacol. 215, 237 (1992).

    Article  Google Scholar 

  25. 25.

    E. J. Shin, Y. H. Koh, A. Y. Kim, et al., Behav. Brain Res. 197, 239 (2009).

    Article  Google Scholar 

  26. 26.

    A. R. Giniatullin, F. Darios, A. Shakirzyanova, et al., Neurochem. 98, 1789 (2006).

    Article  Google Scholar 

  27. 27.

    D. I. Keating, J. Neurochem. 104, 298 (2008).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Alekseenko.

Additional information

Original Russian Text © A.V. Alekseenko, V.A. Kolos, T.V. Waseem, S.V. Fedorovich, 2009, published in Biofizika, 2009, Vol. 54, No. 5, pp. 876–880.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alekseenko, A.V., Kolos, V.A., Waseem, T.V. et al. Glutamate induces formation of free radicals in rat brain synaptosomes. BIOPHYSICS 54, 617–620 (2009). https://doi.org/10.1134/S000635090905011X

Download citation

Key words

  • synaptosomes
  • free radicals
  • reactive oxygen species
  • glutamate
  • NMDA
  • kainate