Skip to main content
Log in

Mechanisms of action of RNA polymerase-binding transcription factors that do not bind to DNA

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The mechanisms regulating gene expression are a vigorously expanding area of research. DNA-dependent RNA polymerase (RNAP) is the enzyme of transcription, the first stage of gene expression, and a major target of regulation. There is a class of transcription factors—including the prokaryotic proteins GreA, GreB, Gfh1, Rnk, DksA, TraR and the eukaryotic TFIIS—that do not bind to DNA but directly interact with RNAP: through the secondary channel of the enzyme they reach the catalytic center and modulate its activity. GreA, GreB, and TFIIS act by stimulating the intrinsic endonucleolytic activity of the RNAP catalytic center. This activity allows RNAP to read through transcription pauses and arrest sites. The biochemical activities of other factors of this class are less clear. In this work, the data that accumulated during the last 15 years of research on this exciting group of factors are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

RNAP:

RNA polymerase

EC:

elongation complex

Tth :

Thermus thermophilus

CTD (NTD):

C(N)-terminal domain

HRF:

hydroxyl-radical footprinting

BP:

basic patch

References

  1. S. Borukhov, A. Polyakov, V. Nikiforov, and A. Goldfarb, Proc. Natl. Acad. Sci. USA 89, 8899 (1992).

    Article  ADS  Google Scholar 

  2. S. Borukhov, V. Sagitov, and A. Goldfarb, Cell 72, 459 (1993).

    Article  Google Scholar 

  3. O. Laptenko and S. Borukhov, Methods Enzymol. 371, 219 (2003).

    Article  Google Scholar 

  4. B. J. Paul, M. M. Barker, W. Ross, et al., Cell 118, 311 (2004).

    Article  Google Scholar 

  5. J. Symersky, A. Perederina, M. N. Vassylyeva, et al., J. Biol. Chem. 281, 1309 (2006).

    Article  Google Scholar 

  6. M. D. Blankschien, K. Potrykus, E. Grace, et al., PLoS Genet. 5, e1000345 (2009).

    Article  Google Scholar 

  7. V. Lamour, S. T. Rutherford, K. Kuznedelov, et al., J. Mol. Biol. 383, 367 (2008).

    Article  Google Scholar 

  8. P. Cramer, Curr. Opin. Struct. Biol. 12, 89 (2002).

    Article  Google Scholar 

  9. S. Borukhov and E. Nudler, Trends Microbiol. 16, 126 (2008).

    Article  Google Scholar 

  10. G. Zhang, E. A. Campbell, L. Minakhin, et al., Cell 98, 811 (1999).

    Article  Google Scholar 

  11. D. G. Vassylyev, S. Sekine, O. Laptenko, et al., Nature 417, 712 (2002)

    Article  ADS  Google Scholar 

  12. K. S. Murakami, S. Masuda, E. A. Campbell, et al., Science 296, 1285 (2002).

    Article  ADS  Google Scholar 

  13. D. G. Vassylyev, M. N. Vassylyeva, A. Perederina, et al., Nature 448, 157 (2007).

    Article  ADS  Google Scholar 

  14. K. Murakami and S. A. Darst, Curr. Opin. Struct. Biol. 13, 31 (2003).

    Article  Google Scholar 

  15. S. Borukhov and J. Lee, C. R. Biol. 328, 576 (2005).

    Article  Google Scholar 

  16. G. I. Kravatskaya, Yu. V. Kravatsky, Yu. V. Milchevsky, and N. G. Esipova, Biofizika 52, 965 (2007).

    Google Scholar 

  17. S. G. Kamzolova, A. A. Osipov, P. M. Beskaravainyi, et al., Biofizika 52, 228 (2007).

    Google Scholar 

  18. L. M. Hsu, Biochim. Biophys. Acta 1577, 191 (2002).

    Google Scholar 

  19. A. Revyakin, C. Liu, R. H. Ebright, and T. R. Strick, Science 314, 1139 (2006).

    Article  ADS  Google Scholar 

  20. V. Epshtein, C. J. Cardinale, A. E. Ruckenstein, et al., Mol. Cell 28, 991 (2007).

    Article  Google Scholar 

  21. K. M. Herbert, A. La Porta, B. J. Wong, et al., Cell 125, 1083 (2006).

    Article  Google Scholar 

  22. K. M. Herbert, W. J. Greenleaf, and S. M. Block, Annu. Rev. Biochem. 77, 149 (2008).

    Article  Google Scholar 

  23. R. N. Fish and C. M. Kane, Biochim. Biophys. Acta 1577, 287 (2002).

    Google Scholar 

  24. V. A. Aivasashvilli and R. S. Beabealashvilli, FEBS Lett. 160, 124 (1983).

    Article  Google Scholar 

  25. S. Duquesne, V. Petit, J. Peduzzi, and S. Rebuffat, J. Mol. Microbiol. Biotechnol. 13, 200 (2007).

    Article  Google Scholar 

  26. I. Toulokhonov, J. Zhang, M. Palangat, and R. Landick, Mol. Cell 27, 406 (2007).

    Article  Google Scholar 

  27. J. W. Roberts, S. Shankar, and J. J. Filter, Annu. Rev. Microbiol. 62, 211 (2008).

    Article  Google Scholar 

  28. P. A. Pavco and D. A. Steege, J. Biol. Chem. 265, 9960 (1990).

    Google Scholar 

  29. N. Komissarova and M. Kashlev, J. Biol. Chem. 272, 15329 (1997).

    Article  Google Scholar 

  30. V. Epshtein, F. Toulmé, A. R. Rahmouni, et al., EMBO J. 22, 4719 (2003).

    Article  Google Scholar 

  31. F. Toulmé, M. Guérin, N. Robichon, et al., EMBO J. 18, 5052 (1999).

    Article  Google Scholar 

  32. E. Kashkina, M. Anikin, T. H. Tahirov, et al., Nucl. Acids Res. 34, 4036 (2006).

    Article  Google Scholar 

  33. N. Komissarova and M. Kashlev, Proc. Natl. Acad. Sci. USA 94, 1755 (1997).

    Article  ADS  Google Scholar 

  34. S. Borukhov, J. Lee, and A. Goldfarb, J. Biol. Chem. 266, 23932 (1991).

    Google Scholar 

  35. V. Markovtsov, A. Mustaev, and A. Goldfarb, Proc. Natl. Acad. Sci. USA 93, 3221 (1996).

    Article  ADS  Google Scholar 

  36. F. Toulmé, C. Mosrin-Huaman, J. Sparkowski, et al., EMBO J. 19, 6853 (2000).

    Article  Google Scholar 

  37. J. S. Park, M. T. Marr, and J. W. Roberts, Cell 109, 757 (2002).

    Article  Google Scholar 

  38. M. Susa, T. Kubori, and N. Shimamoto, Mol. Microbiol. 59, 1807 (2006).

    Article  Google Scholar 

  39. A. Hatoum and J. Roberts, Mol. Microbiol. 68, 17 (2008).

    Article  Google Scholar 

  40. C. K. Surratt, S. C. Milan, and M. J. Chamberlin, Proc. Natl. Acad. Sci. USA 88, 7983 (1991).

    Article  ADS  Google Scholar 

  41. M. Orlova, J. Newlands, A. Das, et al., Proc. Natl. Acad. Sci. USA 92, 4596 (1995).

    Article  ADS  Google Scholar 

  42. T. A. Rozovskaya, A. A. Chenchik, and R. Sh. Beabealashvilli, FEBS Lett. 137, 100 (1982).

    Article  Google Scholar 

  43. M. D. Rudd, M. G. Izban, and D. S. Luse, Proc. Natl. Acad. Sci. USA 91, 8057 (1994).

    Article  ADS  Google Scholar 

  44. C. E. Stebbins, S. Borukhov, M. Orlova, et al., Nature 373, 636 (1995).

    Article  ADS  Google Scholar 

  45. M. N. Vassylyeva, V. Svetlov, A. D. Dearborn, et al., EMBO Rep. 8, 1038 (2007).

    Article  Google Scholar 

  46. D. Koulich, V. Nikiforov, and S. Borukhov, J. Mol. Biol. 276, 379 (1998).

    Article  Google Scholar 

  47. D. Koulich, M. Orlova, A. Malhotra, et al., J. Biol. Chem. 272, 7201 (1997).

    Article  Google Scholar 

  48. D. Kulish, J. Lee, I. Lomakin, et al., J. Biol. Chem. 275, 12789 (2000).

    Article  Google Scholar 

  49. A. Polyakov, C. Richter, A. Malhotra, et al., J. Mol. Biol. 281, 465 (1998).

    Article  Google Scholar 

  50. N. Opalka, M. Chlenov, P. Chacon, et al., Cell 114, 335 (2003).

    Article  Google Scholar 

  51. O. Laptenko, J. Lee, I. Lomakin, and S. Borukhov, EMBO J. 22, 6322 (2003).

    Article  Google Scholar 

  52. V. Sosunov, E. Sosunova, A. Mustaev, et al., EMBO J. 22, 2234 (2003).

    Article  Google Scholar 

  53. J. F. Sydow, F. Brueckner, A. C. Cheung, et al., Mol. Cell 34, 710 (2009).

    Article  Google Scholar 

  54. J. I. Glass, N. Assad-Garcia, N. Alperovich, et al., Proc. Natl. Acad. Sci. USA 103, 425 (2006).

    Article  ADS  Google Scholar 

  55. E. Stepanova, J. Lee, M. Ozerova, et al., J. Bacteriol. 189, 8772 (2007).

    Article  Google Scholar 

  56. V. A. Rhodius, W. C. Suh, G. Nonaka, et al., PLoS Biol. 4, e2 (2006).

    Article  Google Scholar 

  57. A. C. Len, D. W. Harty, and N. A. Jacques, Microbiology 150, 1339 (2004).

    Article  Google Scholar 

  58. J. Nogales, R. Campos, H. BenAbdelkhalek, et al., Mol. Plant Microbe Interact. 15, 225 (2002).

    Article  Google Scholar 

  59. W. Wei, J. Jiang, X. Li, et al., Lett. Appl. Microbiol. 39, 278 (2004).

    Article  Google Scholar 

  60. J. Kawamoto, T. Kurihara, M. Kitagawa, et al., Extremophiles 11, 819 (2007).

    Article  Google Scholar 

  61. Y. Flashner, E. Mamroud, A. Tidhar, et al., Infect. Immun. 72, 908 (2004).

    Article  Google Scholar 

  62. V. K. Singh, R. K. Jayaswal, and B. J. Wilkinson, FEMS Microbiol. Lett. 199, 79 (2001).

    Google Scholar 

  63. M. G. Izban and D. S. Luse, Genes Dev. 6, 1342 (1992).

    Article  Google Scholar 

  64. M. Wind and D. Reines, Bioessays 22, 327 (2000).

    Article  Google Scholar 

  65. H. Kettenberger, K. J. Armache, and P. Cramer, Cell 114, 347 (2003).

    Article  Google Scholar 

  66. B. Kim, A. I. Nesvizhskii, P. G. Rani, et al., Proc. Natl. Acad. Sci. USA 104, 16068 (2007).

    Article  ADS  Google Scholar 

  67. B. Guglielmi, J. Soutourina, C. Esnault, and M. Werner, Proc. Natl. Acad. Sci. USA 104, 16062 (2007).

    Article  ADS  Google Scholar 

  68. E. A. Galburt, S. W. Grill, A. Wiedmann, et al., Nature 446, 820 (2007).

    Article  ADS  Google Scholar 

  69. M. Guermah, V. B. Palhan, A. J. Tackett, et al., Cell 125, 275 (2006).

    Article  Google Scholar 

  70. N. Charlet-Berguerand, S. Feuerhahn, S. E. Kong, et al., EMBO J. 25, 5481 (2006).

    Article  Google Scholar 

  71. M. Fousteri and L. H. Mullenders, Cell Res. 18, 73 (2008).

    Article  Google Scholar 

  72. O. Laptenko, S. S. Kim, J. Lee, et al., EMBO J. 25, 2131 (2006).

    Article  Google Scholar 

  73. S. P. Haugen, W. Ross, and R. L. Gourse, Nat. Rev. Microbiol. 6, 507 (2008).

    Article  Google Scholar 

  74. A. Szalewska-Palasz, G. Wegrzyn, and A. Wegrzyn, J. Appl. Genet. 48, 281 (2007).

    Google Scholar 

  75. L. U. Magnusson, B. Gummesson, P. Joksimovic, et al., J. Bacteriol. 189, 193 (2007).

    Google Scholar 

  76. I. Artsimovitch, V. Patlan, S. Sekine, et al., Cell 117, 299 (2004).

    Article  Google Scholar 

  77. C. E. Vrentas, T. Gaal, M. B. Berkmen, et al., J. Mol. Biol. 377, 551 (2008).

    Article  Google Scholar 

  78. S. T. Rutherford, J. J. Lemke, C. E. Vrentas, et al., J. Mol. Biol. 366, 1243 (2007).

    Article  Google Scholar 

  79. B. J. Paul, M. B. Berkmen, and R. L. Gourse, Proc. Natl. Acad. Sci. USA 102, 7823 (2005).

    Article  ADS  Google Scholar 

  80. S. Shankar, D. Schlictman, and A. M. Chakrabarty, Mol. Microbiol. 17, 935 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Severinov.

Additional information

Original Russian Text © E.V. Stepanova, A.B. Shevelev, S.I. Borukhov, K.V. Severinov, 2009, published in Biofizika, 2009, Vol. 54, No. 5, pp. 773–790.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanova, E.V., Shevelev, A.B., Borukhov, S.I. et al. Mechanisms of action of RNA polymerase-binding transcription factors that do not bind to DNA. BIOPHYSICS 54, 555–568 (2009). https://doi.org/10.1134/S0006350909050017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909050017

Key words

Navigation