Skip to main content
Log in

Adaptive wavelet analysis of oscillations in the human peripheral blood flow

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The main principles are outlined for spectral timing analysis of the peripheral blood flow oscillations obtained by laser Doppler flowmetry. The oscillations can be studied in a wide frequency range both in stationary and nonstationary conditions during functional tests. The potential of the method has been demonstrated in experiments with the reaction of the microvascular bed to transcutaneous iontophoretic introduction of acetylcholine chloride. The major advantage of the method over conventional wavelet analysis is a significant increase in the “effective” length of the signal analyzed, which allows correct analysis of low-frequency components in much shorter LDF recordings than those commonly used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Stern, Nature 254(5495), 56 (1975).

    Article  ADS  Google Scholar 

  2. P. A. Oberg, T. Tenland, and G. E. Nilsson, Acta Med. Scand. Suppl. 687, 17 (1984).

    Google Scholar 

  3. Laser Doppler Flowmetry of Microcirculation: A Medical Manual, Ed. by A. I. Krupatkin and V. V. Sidorov (Meditsina, Moscow, 2005) [in Russian].

    Google Scholar 

  4. V. I. Kozlov, L. V. Korsi, and V. G. Sokolov, in Proc. II All-Russia Symp. Application of Laser Doppler Flowmetry in Medical Practice (Moscow, 1998), pp. 17–25.

  5. V. I. Kozlov, in Proc. III All-Russia Symp. Application of Laser Doppler Flowmetry in Medical Practice (Moscow, 2000), pp. 5–15.

  6. M. E. Muck-Weymann, H. P. Albrecht, D. Hager, et al., Microvasc. Res. 52(1), 69 (1996).

    Article  Google Scholar 

  7. L. E. Staxrud, A. Jakobsson, K. Kvernebo, et al., Microvasc. Res. 51(1), 69 (1996).

    Article  Google Scholar 

  8. M. Bracic and A. Stefanovska, Bull. Math. Biol. 60(5), 919 (1998).

    Article  MATH  Google Scholar 

  9. Y. Kimura, K. Okamura, T. Watanabe, et al., Am. J. Physiol. 275, H1993 (1998).

    Google Scholar 

  10. H. D. Kvernmo, A. Stefanovska, M. Bracic, et al., Microvasc. Res. 56(3), 173 (1998).

    Article  Google Scholar 

  11. D. Roach, A. Sheldon, W. Wilson, and R. Sheldon, Am. J. Physiol. 274, H1465 (1998).

    Google Scholar 

  12. M. Hozic and A. Stefanovska, Physica A 280, 587 (2000).

    Article  ADS  Google Scholar 

  13. A. Humeau, J. L. Saumet, and J. P. L’Huillier, Microvasc. Res. 60(2), 141 (2000).

    Article  Google Scholar 

  14. N. M. Astaf’eva, Usp. Fiz. Nauk 166, 1145 (1996).

    Article  Google Scholar 

  15. L. V. Novikov, Basics of Wavelet Analysis (Modus, St-Petersburg, 1999) [in Russian].

    Google Scholar 

  16. D. K. Galyagin and P. G. Frik, Matem. Model. Sistem Prots., no. 4, 20 (1996).

  17. A. V. Tankanag and N. K. Chemeris, in Proc. IV All-Russia Symp. Application of Laser Doppler Flowmetry in Medical Practice (Tula, 2002), pp. 28–39.

  18. A. Stefanovska, M. Bracic, and H. D. Kvernmo, IEEE Trans. Biomed. Eng. 46, 1230 (1999).

    Article  Google Scholar 

  19. S. A. Landsverk, P. Kvandal, A. Bernjak, et al., Anesth. Analg. 105, 1012 (2007).

    Article  Google Scholar 

  20. T. N. Konyaeva, A. V. Tankanag, G. V. Krasnikov, et al., Vestn. Novykh Med. Tekhnol. 9(1–2), 68 (2004).

    Google Scholar 

  21. A. Stefanovska and M. Bracic, Contemporary Physics 40(1), 31 (1999).

    Article  ADS  Google Scholar 

  22. A. Bollinger, A. Yanar, U. Hoffmann, and U. K. Franzeck, in Progress in Applied Microcirculation, Ed. by K. Messmer (Basel, 1993), pp. 52–58.

  23. W. Funk and M. Intaglietta, Prog. Appl. Microcirc. 3, 66 (1983).

    Google Scholar 

  24. J. Kastrup, J. Bulow, and N. A. Lassen, Int. J. Microcirc. Clin. Exp. 8, 205 (1989).

    Google Scholar 

  25. A. I. Krupatkin, Clinical Neuroangiophysiology of the Limbs (Nauchnyi Mir, Moscow, 2003) [in Russian].

    Google Scholar 

  26. T. Soderstrom, A. Stefanovska, M. Veber, and H. Svensson, Am. J. Physiol. Heart Circ. Physiol. 284, H1638 (2003).

    Google Scholar 

  27. H. D. Kvernmo, A. Stefanovska, K. A. Kirkeboen, and K. Kvernebo, Microvasc. Res. 57(3), 298 (1999).

    Article  Google Scholar 

  28. I. V. Tikhonova, A. V. Tankanag, N. I. Kosyakova, and N. K. Chemeris, Ross. Fiziol. Zh. im. Sechenova 92, 1429 (2006).

    Google Scholar 

  29. I. V. Tikhonova, A. V. Tankanag, N. I. Kosyakova, and N. K. Chemeris, Ross. Fiziol. Zh. im. Sechenova 91, 1132 (2005).

    Google Scholar 

  30. I. V. Tikhonova, A. V. Tankanag, N. I. Kosyakova, and N. K. Chemeris, Ross. Fiziol. Zh. im. Sechenova 91, 1305 (2005).

    Google Scholar 

  31. I. V. Tikhonova, A. V. Tankanag, N. I. Kosyakova, and N. K. Chemeris, Klin. Fisiol. Krovoobr., no. 4, 53 (2005).

  32. I. V. Tikhonova, A. V. Tankanag, N. I. Kosyakova, and N. K. Chemeris, Klin. Fisiol. Krovoobr., no. 3, 31 (2006).

  33. T. N. Konyaeva, G. V. Krasnikov, G. M. Piskunova, et al., Vestn. Novykh Med. Tekhnol. 9(4), 89 (2002).

    Google Scholar 

  34. G. V. Krasnikov, A. V. Tankanag, T. N. Konyaeva, et al., Ross. Fiziol. Zh. im. Sechenova 93, 394 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tankanag, N.K. Chemeris, 2009, published in Biofizika, 2009, Vol. 54, No. 3, pp. 537–544.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tankanag, A.V., Chemeris, N.K. Adaptive wavelet analysis of oscillations in the human peripheral blood flow. BIOPHYSICS 54, 375–380 (2009). https://doi.org/10.1134/S0006350909030221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350909030221

Key words

Navigation